mirror of
				https://github.com/lleene/hugo-site.git
				synced 2025-10-26 17:59:03 +01:00 
			
		
		
		
	clean derivation with summary table
This commit is contained in:
		| @ -149,47 +149,40 @@ characteristics for generated polynomials. | ||||
| Specifically polynomials of even orders with real roots such | ||||
| that we can decompose the polynomial \\(P(x)\\) as a product of several  | ||||
| elements in the form of \\( (x+p_1)(x+p_2) \\). We can show that the  | ||||
| fourier-transform of of this element is in the form of \\( sinc(d ω)^4 \\) | ||||
| where \\( d = (p_1 - p_2)/2 \\) such that we can resolve the transform for  | ||||
| \\( P(x) = (x+d)(x-d) \\) | ||||
|  | ||||
| First consider a simple box function of  | ||||
| width \\( d/4 \\) and its corresponding fourier transform: | ||||
| fourier-transform of of this element is in the form of \\( sinc(d ω)^2 \\) | ||||
| where \\( d = (p_1 - p_2)/2 \\) such that we can derive relations for the  | ||||
| polynomial \\( P(x) = d^2-x^2 \\) and scale them accordingly. | ||||
|  | ||||
| $$ | ||||
| S(x) = \begin{cases} | ||||
|    1 &\text{if |x| <= d/4 } \\\\ | ||||
|    0 &\text{otherwise }  | ||||
| \end{cases}  \quad \xrightarrow{\mathfrak{F}} \quad \frac{d}{2}  sinc( \frac{d\omega}{4} )  | ||||
| \hat{P}(x) = \int^{d/2}_{d/2} (d^2-x^2) cos(k x) dx  | ||||
| \quad = \quad  | ||||
| \frac{8 \sin{ (d k) }}{k^3} -  \frac{8 d \cos{ (d k ) }}{k^2} | ||||
| $$ | ||||
|  | ||||
| We can auto-convolve \\(S(x)\\) twice in order to realize a parabola with roots at | ||||
| +/- d. First formulate the associated triangle function \\(T(x)\\): | ||||
| We can numerically solve for some of the filter properties of interest and  | ||||
| compare to other simple windows. There is little suprise in the table below | ||||
| as the roll-off and rejection is closely related to the 3dB bandwidth. | ||||
| Here we see that the frequency response of P(x) is somewhere inbetween a  | ||||
| rectangular window and that of the raise-cosine or Hann window. | ||||
|  | ||||
| | Property      | 2nd Order Poly len(2d) | Rectangle len(2d)     | Hann len(2d)          | | ||||
| |---------------|------------------------|-----------------------|-----------------------| | ||||
| | DC Value      | \\(\frac{2d^3}{3}\\)   | \\(2d^2\\)            | \\(2d^2\\)            | | ||||
| | 3db Bandwidth | \\(\sim 2.498/d\\)     | \\(\sim 1.895/d\\)    | \\(\sim 3.168/d\\)    | | ||||
| | 1st Null      | \\(\sim 4.5/d\\)       | \\(\frac{\pi}{d}\\)   | \\(\frac{2\pi}{d}\\)  | | ||||
| | Roll Off      | 40 dB / decade         | 20 dB / decade        | 60 dB / decade        | | ||||
|  | ||||
| For completeness we also include the analytical expression for the Hann window | ||||
| frourier transform. | ||||
|  | ||||
| $$ | ||||
| T(x) = S(x) \ast S(x) = \int_{-d/2}^{d/2} S(\tau) S(x-\tau) d\tau \quad = \begin{cases} | ||||
|    0  &\text{if x <  -d/2 } \\\\ | ||||
|    (x+d/2)  &\text{if x <  0 } \\\\ | ||||
|    (d/2-x)  &\text{if x <  d/2 } \\\\ | ||||
|    0  &\text{otherwise} | ||||
| \end{cases} | ||||
| $$ | ||||
|  | ||||
| The second auto-convolution of \\(T(x)\\) gives back the parabola \\(P(x)\\): | ||||
|  | ||||
| $$ | ||||
| P(x) = T(x) \ast T(x) = \int_{-d}^{d} T(\tau) T(x-\tau) d\tau = \begin{cases} | ||||
|    d^2/4 - x^2/4  &\text{if |x| <= d } \\\\ | ||||
|    0 &\text{otherwise } | ||||
| \end{cases} | ||||
| \hat{H}(x) = \int^{d/2}_{d/2} (1+cos(\frac{2\pi x}{d})) cos(k x) dx  | ||||
| \quad = \quad  | ||||
| \frac{2 \pi^2 sin(d k)}{k(d^2 k^2-\pi^2)} | ||||
| $$ | ||||
|  | ||||
|  | ||||
|  | ||||
| $$ | ||||
| P(x) \quad \xrightarrow{\mathfrak{F}} \quad \frac{d^4}{16}  sinc(\frac{d\omega}{4} )^4 | ||||
| $$ | ||||
|  | ||||
|  | ||||
| ## References: | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user