feat: add feedback functionality and modal for category feedback style: add feedback button styles in CSS docs: add explanation tab for dashboard usage instructions
48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
import pandas as pd
|
|
import plotly.express as px
|
|
from dash import Dash, dcc, html
|
|
from dash.dependencies import Input, Output
|
|
|
|
from ..data.loader import DataSchema
|
|
from . import ids
|
|
|
|
|
|
def render(app: Dash, data: pd.DataFrame) -> html.Div:
|
|
@app.callback(
|
|
Output(ids.BAR_CHART, "children"),
|
|
[
|
|
Input(ids.YEAR_DROPDOWN, "value"),
|
|
Input(ids.WEEK_DROPDOWN, "value"),
|
|
Input(ids.CATEGORY_DROPDOWN, "value"),
|
|
],
|
|
)
|
|
def update_bar_chart(
|
|
years: list[str], weeks: list[str], categories: list[str]
|
|
) -> html.Div:
|
|
filtered_data = data.query(
|
|
"year in @years and week in @weeks and category in @categories"
|
|
)
|
|
|
|
if filtered_data.shape[0] == 0:
|
|
return html.Div("No data selected.", id=ids.BAR_CHART)
|
|
|
|
def create_pivot_table() -> pd.DataFrame:
|
|
pt = filtered_data.pivot_table(
|
|
values=DataSchema.AMOUNT,
|
|
index=[DataSchema.CATEGORY],
|
|
aggfunc="sum",
|
|
fill_value=0,
|
|
dropna=False,
|
|
)
|
|
return pt.reset_index().sort_values(DataSchema.AMOUNT, ascending=False)
|
|
|
|
fig = px.bar(
|
|
create_pivot_table(),
|
|
x=DataSchema.CATEGORY,
|
|
y=DataSchema.AMOUNT,
|
|
color=DataSchema.CATEGORY,
|
|
)
|
|
|
|
return html.Div(dcc.Graph(figure=fig), id=ids.BAR_CHART)
|
|
|
|
return html.Div(id=ids.BAR_CHART) |