167 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| from pathlib import Path
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| import pandas as pd
 | |
| import pandas._testing as tm
 | |
| from pandas.util.version import Version
 | |
| 
 | |
| pyreadstat = pytest.importorskip("pyreadstat")
 | |
| 
 | |
| 
 | |
| # TODO(CoW) - detection of chained assignment in cython
 | |
| # https://github.com/pandas-dev/pandas/issues/51315
 | |
| @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
 | |
| @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
 | |
| @pytest.mark.parametrize("path_klass", [lambda p: p, Path])
 | |
| def test_spss_labelled_num(path_klass, datapath):
 | |
|     # test file from the Haven project (https://haven.tidyverse.org/)
 | |
|     # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
 | |
|     fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=True)
 | |
|     expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
 | |
|     expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=False)
 | |
|     expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
 | |
| @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
 | |
| def test_spss_labelled_num_na(datapath):
 | |
|     # test file from the Haven project (https://haven.tidyverse.org/)
 | |
|     # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
 | |
|     fname = datapath("io", "data", "spss", "labelled-num-na.sav")
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=True)
 | |
|     expected = pd.DataFrame({"VAR00002": ["This is one", None]})
 | |
|     expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=False)
 | |
|     expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
 | |
| @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
 | |
| def test_spss_labelled_str(datapath):
 | |
|     # test file from the Haven project (https://haven.tidyverse.org/)
 | |
|     # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
 | |
|     fname = datapath("io", "data", "spss", "labelled-str.sav")
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=True)
 | |
|     expected = pd.DataFrame({"gender": ["Male", "Female"]})
 | |
|     expected["gender"] = pd.Categorical(expected["gender"])
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=False)
 | |
|     expected = pd.DataFrame({"gender": ["M", "F"]})
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
 | |
| @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
 | |
| def test_spss_umlauts(datapath):
 | |
|     # test file from the Haven project (https://haven.tidyverse.org/)
 | |
|     # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
 | |
|     fname = datapath("io", "data", "spss", "umlauts.sav")
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=True)
 | |
|     expected = pd.DataFrame(
 | |
|         {"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
 | |
|     )
 | |
|     expected["var1"] = pd.Categorical(expected["var1"])
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=False)
 | |
|     expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
| 
 | |
| def test_spss_usecols(datapath):
 | |
|     # usecols must be list-like
 | |
|     fname = datapath("io", "data", "spss", "labelled-num.sav")
 | |
| 
 | |
|     with pytest.raises(TypeError, match="usecols must be list-like."):
 | |
|         pd.read_spss(fname, usecols="VAR00002")
 | |
| 
 | |
| 
 | |
| def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
 | |
|     # test file from the Haven project (https://haven.tidyverse.org/)
 | |
|     # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
 | |
|     fname = datapath("io", "data", "spss", "umlauts.sav")
 | |
| 
 | |
|     df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
 | |
|     expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
 | |
| 
 | |
|     if dtype_backend == "pyarrow":
 | |
|         pa = pytest.importorskip("pyarrow")
 | |
| 
 | |
|         from pandas.arrays import ArrowExtensionArray
 | |
| 
 | |
|         expected = pd.DataFrame(
 | |
|             {
 | |
|                 col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
 | |
|                 for col in expected.columns
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     tm.assert_frame_equal(df, expected)
 | |
| 
 | |
| 
 | |
| def test_invalid_dtype_backend():
 | |
|     msg = (
 | |
|         "dtype_backend numpy is invalid, only 'numpy_nullable' and "
 | |
|         "'pyarrow' are allowed."
 | |
|     )
 | |
|     with pytest.raises(ValueError, match=msg):
 | |
|         pd.read_spss("test", dtype_backend="numpy")
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
 | |
| @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
 | |
| def test_spss_metadata(datapath):
 | |
|     # GH 54264
 | |
|     fname = datapath("io", "data", "spss", "labelled-num.sav")
 | |
| 
 | |
|     df = pd.read_spss(fname)
 | |
|     metadata = {
 | |
|         "column_names": ["VAR00002"],
 | |
|         "column_labels": [None],
 | |
|         "column_names_to_labels": {"VAR00002": None},
 | |
|         "file_encoding": "UTF-8",
 | |
|         "number_columns": 1,
 | |
|         "number_rows": 1,
 | |
|         "variable_value_labels": {"VAR00002": {1.0: "This is one"}},
 | |
|         "value_labels": {"labels0": {1.0: "This is one"}},
 | |
|         "variable_to_label": {"VAR00002": "labels0"},
 | |
|         "notes": [],
 | |
|         "original_variable_types": {"VAR00002": "F8.0"},
 | |
|         "readstat_variable_types": {"VAR00002": "double"},
 | |
|         "table_name": None,
 | |
|         "missing_ranges": {},
 | |
|         "missing_user_values": {},
 | |
|         "variable_storage_width": {"VAR00002": 8},
 | |
|         "variable_display_width": {"VAR00002": 8},
 | |
|         "variable_alignment": {"VAR00002": "unknown"},
 | |
|         "variable_measure": {"VAR00002": "unknown"},
 | |
|         "file_label": None,
 | |
|         "file_format": "sav/zsav",
 | |
|     }
 | |
|     if Version(pyreadstat.__version__) >= Version("1.2.4"):
 | |
|         metadata.update(
 | |
|             {
 | |
|                 "creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
 | |
|                 "modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
 | |
|             }
 | |
|         )
 | |
|     if Version(pyreadstat.__version__) >= Version("1.2.8"):
 | |
|         metadata["mr_sets"] = {}
 | |
|     tm.assert_dict_equal(df.attrs, metadata)
 |