1735 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1735 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import defaultdict
 | |
| from datetime import datetime
 | |
| from functools import partial
 | |
| import math
 | |
| import operator
 | |
| import re
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| from pandas.compat import IS64
 | |
| from pandas.errors import InvalidIndexError
 | |
| import pandas.util._test_decorators as td
 | |
| 
 | |
| from pandas.core.dtypes.common import (
 | |
|     is_any_real_numeric_dtype,
 | |
|     is_numeric_dtype,
 | |
|     is_object_dtype,
 | |
| )
 | |
| 
 | |
| import pandas as pd
 | |
| from pandas import (
 | |
|     CategoricalIndex,
 | |
|     DataFrame,
 | |
|     DatetimeIndex,
 | |
|     IntervalIndex,
 | |
|     PeriodIndex,
 | |
|     RangeIndex,
 | |
|     Series,
 | |
|     TimedeltaIndex,
 | |
|     date_range,
 | |
|     period_range,
 | |
|     timedelta_range,
 | |
| )
 | |
| import pandas._testing as tm
 | |
| from pandas.core.indexes.api import (
 | |
|     Index,
 | |
|     MultiIndex,
 | |
|     _get_combined_index,
 | |
|     ensure_index,
 | |
|     ensure_index_from_sequences,
 | |
| )
 | |
| 
 | |
| 
 | |
| class TestIndex:
 | |
|     @pytest.fixture
 | |
|     def simple_index(self) -> Index:
 | |
|         return Index(list("abcde"))
 | |
| 
 | |
|     def test_can_hold_identifiers(self, simple_index):
 | |
|         index = simple_index
 | |
|         key = index[0]
 | |
|         assert index._can_hold_identifiers_and_holds_name(key) is True
 | |
| 
 | |
|     @pytest.mark.parametrize("index", ["datetime"], indirect=True)
 | |
|     def test_new_axis(self, index):
 | |
|         # TODO: a bunch of scattered tests check this deprecation is enforced.
 | |
|         #  de-duplicate/centralize them.
 | |
|         with pytest.raises(ValueError, match="Multi-dimensional indexing"):
 | |
|             # GH#30588 multi-dimensional indexing deprecated
 | |
|             index[None, :]
 | |
| 
 | |
|     def test_constructor_regular(self, index):
 | |
|         tm.assert_contains_all(index, index)
 | |
| 
 | |
|     @pytest.mark.parametrize("index", ["string"], indirect=True)
 | |
|     def test_constructor_casting(self, index):
 | |
|         # casting
 | |
|         arr = np.array(index)
 | |
|         new_index = Index(arr)
 | |
|         tm.assert_contains_all(arr, new_index)
 | |
|         tm.assert_index_equal(index, new_index)
 | |
| 
 | |
|     def test_constructor_copy(self, using_infer_string):
 | |
|         index = Index(list("abc"), name="name")
 | |
|         arr = np.array(index)
 | |
|         new_index = Index(arr, copy=True, name="name")
 | |
|         assert isinstance(new_index, Index)
 | |
|         assert new_index.name == "name"
 | |
|         if using_infer_string:
 | |
|             tm.assert_extension_array_equal(
 | |
|                 new_index.values, pd.array(arr, dtype="str")
 | |
|             )
 | |
|         else:
 | |
|             tm.assert_numpy_array_equal(arr, new_index.values)
 | |
|         arr[0] = "SOMEBIGLONGSTRING"
 | |
|         assert new_index[0] != "SOMEBIGLONGSTRING"
 | |
| 
 | |
|     @pytest.mark.parametrize("cast_as_obj", [True, False])
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             date_range(
 | |
|                 "2015-01-01 10:00",
 | |
|                 freq="D",
 | |
|                 periods=3,
 | |
|                 tz="US/Eastern",
 | |
|                 name="Green Eggs & Ham",
 | |
|             ),  # DTI with tz
 | |
|             date_range("2015-01-01 10:00", freq="D", periods=3),  # DTI no tz
 | |
|             timedelta_range("1 days", freq="D", periods=3),  # td
 | |
|             period_range("2015-01-01", freq="D", periods=3),  # period
 | |
|         ],
 | |
|     )
 | |
|     def test_constructor_from_index_dtlike(self, cast_as_obj, index):
 | |
|         if cast_as_obj:
 | |
|             with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
 | |
|                 result = Index(index.astype(object))
 | |
|         else:
 | |
|             result = Index(index)
 | |
| 
 | |
|         tm.assert_index_equal(result, index)
 | |
| 
 | |
|         if isinstance(index, DatetimeIndex):
 | |
|             assert result.tz == index.tz
 | |
|             if cast_as_obj:
 | |
|                 # GH#23524 check that Index(dti, dtype=object) does not
 | |
|                 #  incorrectly raise ValueError, and that nanoseconds are not
 | |
|                 #  dropped
 | |
|                 index += pd.Timedelta(nanoseconds=50)
 | |
|                 result = Index(index, dtype=object)
 | |
|                 assert result.dtype == np.object_
 | |
|                 assert list(result) == list(index)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index,has_tz",
 | |
|         [
 | |
|             (
 | |
|                 date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"),
 | |
|                 True,
 | |
|             ),  # datetimetz
 | |
|             (timedelta_range("1 days", freq="D", periods=3), False),  # td
 | |
|             (period_range("2015-01-01", freq="D", periods=3), False),  # period
 | |
|         ],
 | |
|     )
 | |
|     def test_constructor_from_series_dtlike(self, index, has_tz):
 | |
|         result = Index(Series(index))
 | |
|         tm.assert_index_equal(result, index)
 | |
| 
 | |
|         if has_tz:
 | |
|             assert result.tz == index.tz
 | |
| 
 | |
|     def test_constructor_from_series_freq(self):
 | |
|         # GH 6273
 | |
|         # create from a series, passing a freq
 | |
|         dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
 | |
|         expected = DatetimeIndex(dts, freq="MS")
 | |
| 
 | |
|         s = Series(pd.to_datetime(dts))
 | |
|         result = DatetimeIndex(s, freq="MS")
 | |
| 
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_constructor_from_frame_series_freq(self, using_infer_string):
 | |
|         # GH 6273
 | |
|         # create from a series, passing a freq
 | |
|         dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
 | |
|         expected = DatetimeIndex(dts, freq="MS")
 | |
| 
 | |
|         df = DataFrame(np.random.default_rng(2).random((5, 3)))
 | |
|         df["date"] = dts
 | |
|         result = DatetimeIndex(df["date"], freq="MS")
 | |
|         dtype = object if not using_infer_string else "str"
 | |
|         assert df["date"].dtype == dtype
 | |
|         expected.name = "date"
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         expected = Series(dts, name="date")
 | |
|         tm.assert_series_equal(df["date"], expected)
 | |
| 
 | |
|         # GH 6274
 | |
|         # infer freq of same
 | |
|         if not using_infer_string:
 | |
|             # Doesn't work with arrow strings
 | |
|             freq = pd.infer_freq(df["date"])
 | |
|             assert freq == "MS"
 | |
| 
 | |
|     def test_constructor_int_dtype_nan(self):
 | |
|         # see gh-15187
 | |
|         data = [np.nan]
 | |
|         expected = Index(data, dtype=np.float64)
 | |
|         result = Index(data, dtype="float")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "klass,dtype,na_val",
 | |
|         [
 | |
|             (Index, np.float64, np.nan),
 | |
|             (DatetimeIndex, "datetime64[ns]", pd.NaT),
 | |
|         ],
 | |
|     )
 | |
|     def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val):
 | |
|         # GH 13467
 | |
|         na_list = [na_val, na_val]
 | |
|         expected = klass(na_list)
 | |
|         assert expected.dtype == dtype
 | |
| 
 | |
|         result = Index(na_list)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         result = Index(np.array(na_list))
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "vals,dtype",
 | |
|         [
 | |
|             ([1, 2, 3, 4, 5], "int"),
 | |
|             ([1.1, np.nan, 2.2, 3.0], "float"),
 | |
|             (["A", "B", "C", np.nan], "obj"),
 | |
|         ],
 | |
|     )
 | |
|     def test_constructor_simple_new(self, vals, dtype):
 | |
|         index = Index(vals, name=dtype)
 | |
|         result = index._simple_new(index.values, dtype)
 | |
|         tm.assert_index_equal(result, index)
 | |
| 
 | |
|     @pytest.mark.parametrize("attr", ["values", "asi8"])
 | |
|     @pytest.mark.parametrize("klass", [Index, DatetimeIndex])
 | |
|     def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass):
 | |
|         # Test constructing with a datetimetz dtype
 | |
|         # .values produces numpy datetimes, so these are considered naive
 | |
|         # .asi8 produces integers, so these are considered epoch timestamps
 | |
|         # ^the above will be true in a later version. Right now we `.view`
 | |
|         # the i8 values as NS_DTYPE, effectively treating them as wall times.
 | |
|         index = date_range("2011-01-01", periods=5)
 | |
|         arg = getattr(index, attr)
 | |
|         index = index.tz_localize(tz_naive_fixture)
 | |
|         dtype = index.dtype
 | |
| 
 | |
|         # As of 2.0 astype raises on dt64.astype(dt64tz)
 | |
|         err = tz_naive_fixture is not None
 | |
|         msg = "Cannot use .astype to convert from timezone-naive dtype to"
 | |
| 
 | |
|         if attr == "asi8":
 | |
|             result = DatetimeIndex(arg).tz_localize(tz_naive_fixture)
 | |
|             tm.assert_index_equal(result, index)
 | |
|         elif klass is Index:
 | |
|             with pytest.raises(TypeError, match="unexpected keyword"):
 | |
|                 klass(arg, tz=tz_naive_fixture)
 | |
|         else:
 | |
|             result = klass(arg, tz=tz_naive_fixture)
 | |
|             tm.assert_index_equal(result, index)
 | |
| 
 | |
|         if attr == "asi8":
 | |
|             if err:
 | |
|                 with pytest.raises(TypeError, match=msg):
 | |
|                     DatetimeIndex(arg).astype(dtype)
 | |
|             else:
 | |
|                 result = DatetimeIndex(arg).astype(dtype)
 | |
|                 tm.assert_index_equal(result, index)
 | |
|         else:
 | |
|             result = klass(arg, dtype=dtype)
 | |
|             tm.assert_index_equal(result, index)
 | |
| 
 | |
|         if attr == "asi8":
 | |
|             result = DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture)
 | |
|             tm.assert_index_equal(result, index)
 | |
|         elif klass is Index:
 | |
|             with pytest.raises(TypeError, match="unexpected keyword"):
 | |
|                 klass(arg, tz=tz_naive_fixture)
 | |
|         else:
 | |
|             result = klass(list(arg), tz=tz_naive_fixture)
 | |
|             tm.assert_index_equal(result, index)
 | |
| 
 | |
|         if attr == "asi8":
 | |
|             if err:
 | |
|                 with pytest.raises(TypeError, match=msg):
 | |
|                     DatetimeIndex(list(arg)).astype(dtype)
 | |
|             else:
 | |
|                 result = DatetimeIndex(list(arg)).astype(dtype)
 | |
|                 tm.assert_index_equal(result, index)
 | |
|         else:
 | |
|             result = klass(list(arg), dtype=dtype)
 | |
|             tm.assert_index_equal(result, index)
 | |
| 
 | |
|     @pytest.mark.parametrize("attr", ["values", "asi8"])
 | |
|     @pytest.mark.parametrize("klass", [Index, TimedeltaIndex])
 | |
|     def test_constructor_dtypes_timedelta(self, attr, klass):
 | |
|         index = timedelta_range("1 days", periods=5)
 | |
|         index = index._with_freq(None)  # won't be preserved by constructors
 | |
|         dtype = index.dtype
 | |
| 
 | |
|         values = getattr(index, attr)
 | |
| 
 | |
|         result = klass(values, dtype=dtype)
 | |
|         tm.assert_index_equal(result, index)
 | |
| 
 | |
|         result = klass(list(values), dtype=dtype)
 | |
|         tm.assert_index_equal(result, index)
 | |
| 
 | |
|     @pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])])
 | |
|     @pytest.mark.parametrize(
 | |
|         "klass",
 | |
|         [
 | |
|             Index,
 | |
|             CategoricalIndex,
 | |
|             DatetimeIndex,
 | |
|             TimedeltaIndex,
 | |
|         ],
 | |
|     )
 | |
|     def test_constructor_empty(self, value, klass):
 | |
|         empty = klass(value)
 | |
|         assert isinstance(empty, klass)
 | |
|         assert not len(empty)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "empty,klass",
 | |
|         [
 | |
|             (PeriodIndex([], freq="D"), PeriodIndex),
 | |
|             (PeriodIndex(iter([]), freq="D"), PeriodIndex),
 | |
|             (PeriodIndex((_ for _ in []), freq="D"), PeriodIndex),
 | |
|             (RangeIndex(step=1), RangeIndex),
 | |
|             (MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex),
 | |
|         ],
 | |
|     )
 | |
|     def test_constructor_empty_special(self, empty, klass):
 | |
|         assert isinstance(empty, klass)
 | |
|         assert not len(empty)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             "datetime",
 | |
|             "float64",
 | |
|             "float32",
 | |
|             "int64",
 | |
|             "int32",
 | |
|             "period",
 | |
|             "range",
 | |
|             "repeats",
 | |
|             "timedelta",
 | |
|             "tuples",
 | |
|             "uint64",
 | |
|             "uint32",
 | |
|         ],
 | |
|         indirect=True,
 | |
|     )
 | |
|     def test_view_with_args(self, index):
 | |
|         index.view("i8")
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             "string",
 | |
|             pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")),
 | |
|             "bool-object",
 | |
|             "bool-dtype",
 | |
|             "empty",
 | |
|         ],
 | |
|         indirect=True,
 | |
|     )
 | |
|     def test_view_with_args_object_array_raises(self, index):
 | |
|         if index.dtype == bool:
 | |
|             msg = "When changing to a larger dtype"
 | |
|             with pytest.raises(ValueError, match=msg):
 | |
|                 index.view("i8")
 | |
|         else:
 | |
|             msg = (
 | |
|                 r"Cannot change data-type for array of references\.|"
 | |
|                 r"Cannot change data-type for object array\.|"
 | |
|                 r"Cannot change data-type for array of strings\.|"
 | |
|             )
 | |
|             with pytest.raises(TypeError, match=msg):
 | |
|                 index.view("i8")
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         ["int64", "int32", "range"],
 | |
|         indirect=True,
 | |
|     )
 | |
|     def test_astype(self, index):
 | |
|         casted = index.astype("i8")
 | |
| 
 | |
|         # it works!
 | |
|         casted.get_loc(5)
 | |
| 
 | |
|         # pass on name
 | |
|         index.name = "foobar"
 | |
|         casted = index.astype("i8")
 | |
|         assert casted.name == "foobar"
 | |
| 
 | |
|     def test_equals_object(self):
 | |
|         # same
 | |
|         assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"]))
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]]
 | |
|     )
 | |
|     def test_not_equals_object(self, comp):
 | |
|         assert not Index(["a", "b", "c"]).equals(comp)
 | |
| 
 | |
|     def test_identical(self):
 | |
|         # index
 | |
|         i1 = Index(["a", "b", "c"])
 | |
|         i2 = Index(["a", "b", "c"])
 | |
| 
 | |
|         assert i1.identical(i2)
 | |
| 
 | |
|         i1 = i1.rename("foo")
 | |
|         assert i1.equals(i2)
 | |
|         assert not i1.identical(i2)
 | |
| 
 | |
|         i2 = i2.rename("foo")
 | |
|         assert i1.identical(i2)
 | |
| 
 | |
|         i3 = Index([("a", "a"), ("a", "b"), ("b", "a")])
 | |
|         i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False)
 | |
|         assert not i3.identical(i4)
 | |
| 
 | |
|     def test_is_(self):
 | |
|         ind = Index(range(10))
 | |
|         assert ind.is_(ind)
 | |
|         assert ind.is_(ind.view().view().view().view())
 | |
|         assert not ind.is_(Index(range(10)))
 | |
|         assert not ind.is_(ind.copy())
 | |
|         assert not ind.is_(ind.copy(deep=False))
 | |
|         assert not ind.is_(ind[:])
 | |
|         assert not ind.is_(np.array(range(10)))
 | |
| 
 | |
|         # quasi-implementation dependent
 | |
|         assert ind.is_(ind.view())
 | |
|         ind2 = ind.view()
 | |
|         ind2.name = "bob"
 | |
|         assert ind.is_(ind2)
 | |
|         assert ind2.is_(ind)
 | |
|         # doesn't matter if Indices are *actually* views of underlying data,
 | |
|         assert not ind.is_(Index(ind.values))
 | |
|         arr = np.array(range(1, 11))
 | |
|         ind1 = Index(arr, copy=False)
 | |
|         ind2 = Index(arr, copy=False)
 | |
|         assert not ind1.is_(ind2)
 | |
| 
 | |
|     def test_asof_numeric_vs_bool_raises(self):
 | |
|         left = Index([1, 2, 3])
 | |
|         right = Index([True, False], dtype=object)
 | |
| 
 | |
|         msg = "Cannot compare dtypes int64 and bool"
 | |
|         with pytest.raises(TypeError, match=msg):
 | |
|             left.asof(right[0])
 | |
|         # TODO: should right.asof(left[0]) also raise?
 | |
| 
 | |
|         with pytest.raises(InvalidIndexError, match=re.escape(str(right))):
 | |
|             left.asof(right)
 | |
| 
 | |
|         with pytest.raises(InvalidIndexError, match=re.escape(str(left))):
 | |
|             right.asof(left)
 | |
| 
 | |
|     @pytest.mark.parametrize("index", ["string"], indirect=True)
 | |
|     def test_booleanindex(self, index):
 | |
|         bool_index = np.ones(len(index), dtype=bool)
 | |
|         bool_index[5:30:2] = False
 | |
| 
 | |
|         sub_index = index[bool_index]
 | |
| 
 | |
|         for i, val in enumerate(sub_index):
 | |
|             assert sub_index.get_loc(val) == i
 | |
| 
 | |
|         sub_index = index[list(bool_index)]
 | |
|         for i, val in enumerate(sub_index):
 | |
|             assert sub_index.get_loc(val) == i
 | |
| 
 | |
|     def test_fancy(self, simple_index):
 | |
|         index = simple_index
 | |
|         sl = index[[1, 2, 3]]
 | |
|         for i in sl:
 | |
|             assert i == sl[sl.get_loc(i)]
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         ["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
 | |
|         indirect=True,
 | |
|     )
 | |
|     @pytest.mark.parametrize("dtype", [int, np.bool_])
 | |
|     def test_empty_fancy(self, index, dtype, request, using_infer_string):
 | |
|         if dtype is np.bool_ and using_infer_string and index.dtype == "string":
 | |
|             request.applymarker(pytest.mark.xfail(reason="numpy behavior is buggy"))
 | |
|         empty_arr = np.array([], dtype=dtype)
 | |
|         empty_index = type(index)([], dtype=index.dtype)
 | |
| 
 | |
|         assert index[[]].identical(empty_index)
 | |
|         if dtype == np.bool_:
 | |
|             with tm.assert_produces_warning(FutureWarning, match="is deprecated"):
 | |
|                 assert index[empty_arr].identical(empty_index)
 | |
|         else:
 | |
|             assert index[empty_arr].identical(empty_index)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         ["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
 | |
|         indirect=True,
 | |
|     )
 | |
|     def test_empty_fancy_raises(self, index):
 | |
|         # DatetimeIndex is excluded, because it overrides getitem and should
 | |
|         # be tested separately.
 | |
|         empty_farr = np.array([], dtype=np.float64)
 | |
|         empty_index = type(index)([], dtype=index.dtype)
 | |
| 
 | |
|         assert index[[]].identical(empty_index)
 | |
|         # np.ndarray only accepts ndarray of int & bool dtypes, so should Index
 | |
|         msg = r"arrays used as indices must be of integer"
 | |
|         with pytest.raises(IndexError, match=msg):
 | |
|             index[empty_farr]
 | |
| 
 | |
|     def test_union_dt_as_obj(self, simple_index):
 | |
|         # TODO: Replace with fixturesult
 | |
|         index = simple_index
 | |
|         date_index = date_range("2019-01-01", periods=10)
 | |
|         first_cat = index.union(date_index)
 | |
|         second_cat = index.union(index)
 | |
| 
 | |
|         appended = Index(np.append(index, date_index.astype("O")))
 | |
| 
 | |
|         tm.assert_index_equal(first_cat, appended)
 | |
|         tm.assert_index_equal(second_cat, index)
 | |
|         tm.assert_contains_all(index, first_cat)
 | |
|         tm.assert_contains_all(index, second_cat)
 | |
|         tm.assert_contains_all(date_index, first_cat)
 | |
| 
 | |
|     def test_map_with_tuples(self):
 | |
|         # GH 12766
 | |
| 
 | |
|         # Test that returning a single tuple from an Index
 | |
|         #   returns an Index.
 | |
|         index = Index(np.arange(3), dtype=np.int64)
 | |
|         result = index.map(lambda x: (x,))
 | |
|         expected = Index([(i,) for i in index])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         # Test that returning a tuple from a map of a single index
 | |
|         #   returns a MultiIndex object.
 | |
|         result = index.map(lambda x: (x, x == 1))
 | |
|         expected = MultiIndex.from_tuples([(i, i == 1) for i in index])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_map_with_tuples_mi(self):
 | |
|         # Test that returning a single object from a MultiIndex
 | |
|         #   returns an Index.
 | |
|         first_level = ["foo", "bar", "baz"]
 | |
|         multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3]))
 | |
|         reduced_index = multi_index.map(lambda x: x[0])
 | |
|         tm.assert_index_equal(reduced_index, Index(first_level))
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             date_range("2020-01-01", freq="D", periods=10),
 | |
|             period_range("2020-01-01", freq="D", periods=10),
 | |
|             timedelta_range("1 day", periods=10),
 | |
|         ],
 | |
|     )
 | |
|     def test_map_tseries_indices_return_index(self, index):
 | |
|         expected = Index([1] * 10)
 | |
|         result = index.map(lambda x: 1)
 | |
|         tm.assert_index_equal(expected, result)
 | |
| 
 | |
|     def test_map_tseries_indices_accsr_return_index(self):
 | |
|         date_index = DatetimeIndex(
 | |
|             date_range("2020-01-01", periods=24, freq="h"), name="hourly"
 | |
|         )
 | |
|         result = date_index.map(lambda x: x.hour)
 | |
|         expected = Index(np.arange(24, dtype="int64"), name="hourly")
 | |
|         tm.assert_index_equal(result, expected, exact=True)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mapper",
 | |
|         [
 | |
|             lambda values, index: {i: e for e, i in zip(values, index)},
 | |
|             lambda values, index: Series(values, index),
 | |
|         ],
 | |
|     )
 | |
|     def test_map_dictlike_simple(self, mapper):
 | |
|         # GH 12756
 | |
|         expected = Index(["foo", "bar", "baz"])
 | |
|         index = Index(np.arange(3), dtype=np.int64)
 | |
|         result = index.map(mapper(expected.values, index))
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mapper",
 | |
|         [
 | |
|             lambda values, index: {i: e for e, i in zip(values, index)},
 | |
|             lambda values, index: Series(values, index),
 | |
|         ],
 | |
|     )
 | |
|     @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
 | |
|     def test_map_dictlike(self, index, mapper, request):
 | |
|         # GH 12756
 | |
|         if isinstance(index, CategoricalIndex):
 | |
|             pytest.skip("Tested in test_categorical")
 | |
|         elif not index.is_unique:
 | |
|             pytest.skip("Cannot map duplicated index")
 | |
| 
 | |
|         rng = np.arange(len(index), 0, -1, dtype=np.int64)
 | |
| 
 | |
|         if index.empty:
 | |
|             # to match proper result coercion for uints
 | |
|             expected = Index([])
 | |
|         elif is_numeric_dtype(index.dtype):
 | |
|             expected = index._constructor(rng, dtype=index.dtype)
 | |
|         elif type(index) is Index and index.dtype != object:
 | |
|             # i.e. EA-backed, for now just Nullable
 | |
|             expected = Index(rng, dtype=index.dtype)
 | |
|         else:
 | |
|             expected = Index(rng)
 | |
| 
 | |
|         result = index.map(mapper(expected, index))
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mapper",
 | |
|         [Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}],
 | |
|     )
 | |
|     def test_map_with_non_function_missing_values(self, mapper):
 | |
|         # GH 12756
 | |
|         expected = Index([2.0, np.nan, "foo"])
 | |
|         result = Index([2, 1, 0]).map(mapper)
 | |
| 
 | |
|         tm.assert_index_equal(expected, result)
 | |
| 
 | |
|     def test_map_na_exclusion(self):
 | |
|         index = Index([1.5, np.nan, 3, np.nan, 5])
 | |
| 
 | |
|         result = index.map(lambda x: x * 2, na_action="ignore")
 | |
|         expected = index * 2
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_map_defaultdict(self):
 | |
|         index = Index([1, 2, 3])
 | |
|         default_dict = defaultdict(lambda: "blank")
 | |
|         default_dict[1] = "stuff"
 | |
|         result = index.map(default_dict)
 | |
|         expected = Index(["stuff", "blank", "blank"])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)])
 | |
|     def test_append_empty_preserve_name(self, name, expected):
 | |
|         left = Index([], name="foo")
 | |
|         right = Index([1, 2, 3], name=name)
 | |
| 
 | |
|         msg = "The behavior of array concatenation with empty entries is deprecated"
 | |
|         with tm.assert_produces_warning(FutureWarning, match=msg):
 | |
|             result = left.append(right)
 | |
|         assert result.name == expected
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index, expected",
 | |
|         [
 | |
|             ("string", False),
 | |
|             ("bool-object", False),
 | |
|             ("bool-dtype", False),
 | |
|             ("categorical", False),
 | |
|             ("int64", True),
 | |
|             ("int32", True),
 | |
|             ("uint64", True),
 | |
|             ("uint32", True),
 | |
|             ("datetime", False),
 | |
|             ("float64", True),
 | |
|             ("float32", True),
 | |
|         ],
 | |
|         indirect=["index"],
 | |
|     )
 | |
|     def test_is_numeric(self, index, expected):
 | |
|         assert is_any_real_numeric_dtype(index) is expected
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index, expected",
 | |
|         [
 | |
|             ("string", True),
 | |
|             ("bool-object", True),
 | |
|             ("bool-dtype", False),
 | |
|             ("categorical", False),
 | |
|             ("int64", False),
 | |
|             ("int32", False),
 | |
|             ("uint64", False),
 | |
|             ("uint32", False),
 | |
|             ("datetime", False),
 | |
|             ("float64", False),
 | |
|             ("float32", False),
 | |
|         ],
 | |
|         indirect=["index"],
 | |
|     )
 | |
|     def test_is_object(self, index, expected, using_infer_string):
 | |
|         if using_infer_string and index.dtype == "string" and expected:
 | |
|             expected = False
 | |
|         assert is_object_dtype(index) is expected
 | |
| 
 | |
|     def test_summary(self, index):
 | |
|         index._summary()
 | |
| 
 | |
|     def test_format_bug(self):
 | |
|         # GH 14626
 | |
|         # windows has different precision on datetime.datetime.now (it doesn't
 | |
|         # include us since the default for Timestamp shows these but Index
 | |
|         # formatting does not we are skipping)
 | |
|         now = datetime.now()
 | |
|         msg = r"Index\.format is deprecated"
 | |
| 
 | |
|         if not str(now).endswith("000"):
 | |
|             index = Index([now])
 | |
|             with tm.assert_produces_warning(FutureWarning, match=msg):
 | |
|                 formatted = index.format()
 | |
|             expected = [str(index[0])]
 | |
|             assert formatted == expected
 | |
| 
 | |
|         with tm.assert_produces_warning(FutureWarning, match=msg):
 | |
|             Index([]).format()
 | |
| 
 | |
|     @pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]])
 | |
|     def test_format_missing(self, vals, nulls_fixture):
 | |
|         # 2845
 | |
|         vals = list(vals)  # Copy for each iteration
 | |
|         vals.append(nulls_fixture)
 | |
|         index = Index(vals, dtype=object)
 | |
|         # TODO: case with complex dtype?
 | |
| 
 | |
|         msg = r"Index\.format is deprecated"
 | |
|         with tm.assert_produces_warning(FutureWarning, match=msg):
 | |
|             formatted = index.format()
 | |
|         null_repr = "NaN" if isinstance(nulls_fixture, float) else str(nulls_fixture)
 | |
|         expected = [str(index[0]), str(index[1]), str(index[2]), null_repr]
 | |
| 
 | |
|         assert formatted == expected
 | |
|         assert index[3] is nulls_fixture
 | |
| 
 | |
|     @pytest.mark.parametrize("op", ["any", "all"])
 | |
|     def test_logical_compat(self, op, simple_index):
 | |
|         index = simple_index
 | |
|         left = getattr(index, op)()
 | |
|         assert left == getattr(index.values, op)()
 | |
|         right = getattr(index.to_series(), op)()
 | |
|         # left might not match right exactly in e.g. string cases where the
 | |
|         # because we use np.any/all instead of .any/all
 | |
|         assert bool(left) == bool(right)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
 | |
|     )
 | |
|     def test_drop_by_str_label(self, index):
 | |
|         n = len(index)
 | |
|         drop = index[list(range(5, 10))]
 | |
|         dropped = index.drop(drop)
 | |
| 
 | |
|         expected = index[list(range(5)) + list(range(10, n))]
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|         dropped = index.drop(index[0])
 | |
|         expected = index[1:]
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
 | |
|     )
 | |
|     @pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]])
 | |
|     def test_drop_by_str_label_raises_missing_keys(self, index, keys):
 | |
|         with pytest.raises(KeyError, match=""):
 | |
|             index.drop(keys)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
 | |
|     )
 | |
|     def test_drop_by_str_label_errors_ignore(self, index):
 | |
|         n = len(index)
 | |
|         drop = index[list(range(5, 10))]
 | |
|         mixed = drop.tolist() + ["foo"]
 | |
|         dropped = index.drop(mixed, errors="ignore")
 | |
| 
 | |
|         expected = index[list(range(5)) + list(range(10, n))]
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|         dropped = index.drop(["foo", "bar"], errors="ignore")
 | |
|         expected = index[list(range(n))]
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|     def test_drop_by_numeric_label_loc(self):
 | |
|         # TODO: Parametrize numeric and str tests after self.strIndex fixture
 | |
|         index = Index([1, 2, 3])
 | |
|         dropped = index.drop(1)
 | |
|         expected = Index([2, 3])
 | |
| 
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|     def test_drop_by_numeric_label_raises_missing_keys(self):
 | |
|         index = Index([1, 2, 3])
 | |
|         with pytest.raises(KeyError, match=""):
 | |
|             index.drop([3, 4])
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]
 | |
|     )
 | |
|     def test_drop_by_numeric_label_errors_ignore(self, key, expected):
 | |
|         index = Index([1, 2, 3])
 | |
|         dropped = index.drop(key, errors="ignore")
 | |
| 
 | |
|         tm.assert_index_equal(dropped, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "values",
 | |
|         [["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]],
 | |
|     )
 | |
|     @pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]])
 | |
|     def test_drop_tuple(self, values, to_drop):
 | |
|         # GH 18304
 | |
|         index = Index(values)
 | |
|         expected = Index(["b"], dtype=object)
 | |
| 
 | |
|         result = index.drop(to_drop)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         removed = index.drop(to_drop[0])
 | |
|         for drop_me in to_drop[1], [to_drop[1]]:
 | |
|             result = removed.drop(drop_me)
 | |
|             tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         removed = index.drop(to_drop[1])
 | |
|         msg = rf"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\""
 | |
|         for drop_me in to_drop[1], [to_drop[1]]:
 | |
|             with pytest.raises(KeyError, match=msg):
 | |
|                 removed.drop(drop_me)
 | |
| 
 | |
|     @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
 | |
|     def test_drop_with_duplicates_in_index(self, index):
 | |
|         # GH38051
 | |
|         if len(index) == 0 or isinstance(index, MultiIndex):
 | |
|             pytest.skip("Test doesn't make sense for empty MultiIndex")
 | |
|         if isinstance(index, IntervalIndex) and not IS64:
 | |
|             pytest.skip("Cannot test IntervalIndex with int64 dtype on 32 bit platform")
 | |
|         index = index.unique().repeat(2)
 | |
|         expected = index[2:]
 | |
|         result = index.drop(index[0])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "attr",
 | |
|         [
 | |
|             "is_monotonic_increasing",
 | |
|             "is_monotonic_decreasing",
 | |
|             "_is_strictly_monotonic_increasing",
 | |
|             "_is_strictly_monotonic_decreasing",
 | |
|         ],
 | |
|     )
 | |
|     def test_is_monotonic_incomparable(self, attr):
 | |
|         index = Index([5, datetime.now(), 7])
 | |
|         assert not getattr(index, attr)
 | |
| 
 | |
|     @pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}])
 | |
|     @pytest.mark.parametrize(
 | |
|         "index,expected",
 | |
|         [
 | |
|             (Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])),
 | |
|             (Index([]), np.array([], dtype=bool)),  # empty
 | |
|         ],
 | |
|     )
 | |
|     def test_isin(self, values, index, expected):
 | |
|         result = index.isin(values)
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     def test_isin_nan_common_object(
 | |
|         self, nulls_fixture, nulls_fixture2, using_infer_string
 | |
|     ):
 | |
|         # Test cartesian product of null fixtures and ensure that we don't
 | |
|         # mangle the various types (save a corner case with PyPy)
 | |
|         idx = Index(["a", nulls_fixture])
 | |
| 
 | |
|         # all nans are the same
 | |
|         if (
 | |
|             isinstance(nulls_fixture, float)
 | |
|             and isinstance(nulls_fixture2, float)
 | |
|             and math.isnan(nulls_fixture)
 | |
|             and math.isnan(nulls_fixture2)
 | |
|         ):
 | |
|             tm.assert_numpy_array_equal(
 | |
|                 idx.isin([nulls_fixture2]),
 | |
|                 np.array([False, True]),
 | |
|             )
 | |
| 
 | |
|         elif nulls_fixture is nulls_fixture2:  # should preserve NA type
 | |
|             tm.assert_numpy_array_equal(
 | |
|                 idx.isin([nulls_fixture2]),
 | |
|                 np.array([False, True]),
 | |
|             )
 | |
| 
 | |
|         elif using_infer_string and idx.dtype == "string":
 | |
|             tm.assert_numpy_array_equal(
 | |
|                 idx.isin([nulls_fixture2]),
 | |
|                 np.array([False, True]),
 | |
|             )
 | |
| 
 | |
|         else:
 | |
|             tm.assert_numpy_array_equal(
 | |
|                 idx.isin([nulls_fixture2]),
 | |
|                 np.array([False, False]),
 | |
|             )
 | |
| 
 | |
|     def test_isin_nan_common_float64(self, nulls_fixture, float_numpy_dtype):
 | |
|         dtype = float_numpy_dtype
 | |
| 
 | |
|         if nulls_fixture is pd.NaT or nulls_fixture is pd.NA:
 | |
|             # Check 1) that we cannot construct a float64 Index with this value
 | |
|             #  and 2) that with an NaN we do not have .isin(nulls_fixture)
 | |
|             msg = (
 | |
|                 r"float\(\) argument must be a string or a (real )?number, "
 | |
|                 f"not {repr(type(nulls_fixture).__name__)}"
 | |
|             )
 | |
|             with pytest.raises(TypeError, match=msg):
 | |
|                 Index([1.0, nulls_fixture], dtype=dtype)
 | |
| 
 | |
|             idx = Index([1.0, np.nan], dtype=dtype)
 | |
|             assert not idx.isin([nulls_fixture]).any()
 | |
|             return
 | |
| 
 | |
|         idx = Index([1.0, nulls_fixture], dtype=dtype)
 | |
|         res = idx.isin([np.nan])
 | |
|         tm.assert_numpy_array_equal(res, np.array([False, True]))
 | |
| 
 | |
|         # we cannot compare NaT with NaN
 | |
|         res = idx.isin([pd.NaT])
 | |
|         tm.assert_numpy_array_equal(res, np.array([False, False]))
 | |
| 
 | |
|     @pytest.mark.parametrize("level", [0, -1])
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             Index(["qux", "baz", "foo", "bar"]),
 | |
|             Index([1.0, 2.0, 3.0, 4.0], dtype=np.float64),
 | |
|         ],
 | |
|     )
 | |
|     def test_isin_level_kwarg(self, level, index):
 | |
|         values = index.tolist()[-2:] + ["nonexisting"]
 | |
| 
 | |
|         expected = np.array([False, False, True, True])
 | |
|         tm.assert_numpy_array_equal(expected, index.isin(values, level=level))
 | |
| 
 | |
|         index.name = "foobar"
 | |
|         tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar"))
 | |
| 
 | |
|     def test_isin_level_kwarg_bad_level_raises(self, index):
 | |
|         for level in [10, index.nlevels, -(index.nlevels + 1)]:
 | |
|             with pytest.raises(IndexError, match="Too many levels"):
 | |
|                 index.isin([], level=level)
 | |
| 
 | |
|     @pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan])
 | |
|     def test_isin_level_kwarg_bad_label_raises(self, label, index):
 | |
|         if isinstance(index, MultiIndex):
 | |
|             index = index.rename(["foo", "bar"] + index.names[2:])
 | |
|             msg = f"'Level {label} not found'"
 | |
|         else:
 | |
|             index = index.rename("foo")
 | |
|             msg = rf"Requested level \({label}\) does not match index name \(foo\)"
 | |
|         with pytest.raises(KeyError, match=msg):
 | |
|             index.isin([], level=label)
 | |
| 
 | |
|     @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
 | |
|     def test_isin_empty(self, empty):
 | |
|         # see gh-16991
 | |
|         index = Index(["a", "b"])
 | |
|         expected = np.array([False, False])
 | |
| 
 | |
|         result = index.isin(empty)
 | |
|         tm.assert_numpy_array_equal(expected, result)
 | |
| 
 | |
|     def test_isin_string_null(self, string_dtype_no_object):
 | |
|         # GH#55821
 | |
|         index = Index(["a", "b"], dtype=string_dtype_no_object)
 | |
|         result = index.isin([None])
 | |
|         expected = np.array([False, False])
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "values",
 | |
|         [
 | |
|             [1, 2, 3, 4],
 | |
|             [1.0, 2.0, 3.0, 4.0],
 | |
|             [True, True, True, True],
 | |
|             ["foo", "bar", "baz", "qux"],
 | |
|             date_range("2018-01-01", freq="D", periods=4),
 | |
|         ],
 | |
|     )
 | |
|     def test_boolean_cmp(self, values):
 | |
|         index = Index(values)
 | |
|         result = index == values
 | |
|         expected = np.array([True, True, True, True], dtype=bool)
 | |
| 
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("index", ["string"], indirect=True)
 | |
|     @pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")])
 | |
|     def test_get_level_values(self, index, name, level):
 | |
|         expected = index.copy()
 | |
|         if name:
 | |
|             expected.name = name
 | |
| 
 | |
|         result = expected.get_level_values(level)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_slice_keep_name(self):
 | |
|         index = Index(["a", "b"], name="asdf")
 | |
|         assert index.name == index[1:].name
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             "string",
 | |
|             "datetime",
 | |
|             "int64",
 | |
|             "int32",
 | |
|             "uint64",
 | |
|             "uint32",
 | |
|             "float64",
 | |
|             "float32",
 | |
|         ],
 | |
|         indirect=True,
 | |
|     )
 | |
|     def test_join_self(self, index, join_type):
 | |
|         result = index.join(index, how=join_type)
 | |
|         expected = index
 | |
|         if join_type == "outer":
 | |
|             expected = expected.sort_values()
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"])
 | |
|     def test_str_attribute(self, method):
 | |
|         # GH9068
 | |
|         index = Index([" jack", "jill ", " jesse ", "frank"])
 | |
|         expected = Index([getattr(str, method)(x) for x in index.values])
 | |
| 
 | |
|         result = getattr(index.str, method)()
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             Index(range(5)),
 | |
|             date_range("2020-01-01", periods=10),
 | |
|             MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]),
 | |
|             period_range(start="2000", end="2010", freq="Y"),
 | |
|         ],
 | |
|     )
 | |
|     def test_str_attribute_raises(self, index):
 | |
|         with pytest.raises(AttributeError, match="only use .str accessor"):
 | |
|             index.str.repeat(2)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "expand,expected",
 | |
|         [
 | |
|             (None, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
 | |
|             (False, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
 | |
|             (
 | |
|                 True,
 | |
|                 MultiIndex.from_tuples(
 | |
|                     [("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)]
 | |
|                 ),
 | |
|             ),
 | |
|         ],
 | |
|     )
 | |
|     def test_str_split(self, expand, expected):
 | |
|         index = Index(["a b c", "d e", "f"])
 | |
|         if expand is not None:
 | |
|             result = index.str.split(expand=expand)
 | |
|         else:
 | |
|             result = index.str.split()
 | |
| 
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_str_bool_return(self):
 | |
|         # test boolean case, should return np.array instead of boolean Index
 | |
|         index = Index(["a1", "a2", "b1", "b2"])
 | |
|         result = index.str.startswith("a")
 | |
|         expected = np.array([True, True, False, False])
 | |
| 
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
|         assert isinstance(result, np.ndarray)
 | |
| 
 | |
|     def test_str_bool_series_indexing(self):
 | |
|         index = Index(["a1", "a2", "b1", "b2"])
 | |
|         s = Series(range(4), index=index)
 | |
| 
 | |
|         result = s[s.index.str.startswith("a")]
 | |
|         expected = Series(range(2), index=["a1", "a2"])
 | |
|         tm.assert_series_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)]
 | |
|     )
 | |
|     def test_tab_completion(self, index, expected):
 | |
|         # GH 9910
 | |
|         result = "str" in dir(index)
 | |
|         assert result == expected
 | |
| 
 | |
|     def test_indexing_doesnt_change_class(self):
 | |
|         index = Index([1, 2, 3, "a", "b", "c"])
 | |
| 
 | |
|         assert index[1:3].identical(Index([2, 3], dtype=np.object_))
 | |
|         assert index[[0, 1]].identical(Index([1, 2], dtype=np.object_))
 | |
| 
 | |
|     def test_outer_join_sort(self):
 | |
|         left_index = Index(np.random.default_rng(2).permutation(15))
 | |
|         right_index = date_range("2020-01-01", periods=10)
 | |
| 
 | |
|         with tm.assert_produces_warning(RuntimeWarning):
 | |
|             result = left_index.join(right_index, how="outer")
 | |
| 
 | |
|         with tm.assert_produces_warning(RuntimeWarning):
 | |
|             expected = left_index.astype(object).union(right_index.astype(object))
 | |
| 
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_take_fill_value(self):
 | |
|         # GH 12631
 | |
|         index = Index(list("ABC"), name="xxx")
 | |
|         result = index.take(np.array([1, 0, -1]))
 | |
|         expected = Index(list("BAC"), name="xxx")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         # fill_value
 | |
|         result = index.take(np.array([1, 0, -1]), fill_value=True)
 | |
|         expected = Index(["B", "A", np.nan], name="xxx")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|         # allow_fill=False
 | |
|         result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
 | |
|         expected = Index(["B", "A", "C"], name="xxx")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_take_fill_value_none_raises(self):
 | |
|         index = Index(list("ABC"), name="xxx")
 | |
|         msg = (
 | |
|             "When allow_fill=True and fill_value is not None, "
 | |
|             "all indices must be >= -1"
 | |
|         )
 | |
| 
 | |
|         with pytest.raises(ValueError, match=msg):
 | |
|             index.take(np.array([1, 0, -2]), fill_value=True)
 | |
|         with pytest.raises(ValueError, match=msg):
 | |
|             index.take(np.array([1, 0, -5]), fill_value=True)
 | |
| 
 | |
|     def test_take_bad_bounds_raises(self):
 | |
|         index = Index(list("ABC"), name="xxx")
 | |
|         with pytest.raises(IndexError, match="out of bounds"):
 | |
|             index.take(np.array([1, -5]))
 | |
| 
 | |
|     @pytest.mark.parametrize("name", [None, "foobar"])
 | |
|     @pytest.mark.parametrize(
 | |
|         "labels",
 | |
|         [
 | |
|             [],
 | |
|             np.array([]),
 | |
|             ["A", "B", "C"],
 | |
|             ["C", "B", "A"],
 | |
|             np.array(["A", "B", "C"]),
 | |
|             np.array(["C", "B", "A"]),
 | |
|             # Must preserve name even if dtype changes
 | |
|             date_range("20130101", periods=3).values,
 | |
|             date_range("20130101", periods=3).tolist(),
 | |
|         ],
 | |
|     )
 | |
|     def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels):
 | |
|         # GH6552
 | |
|         index = Index([0, 1, 2])
 | |
|         index.name = name
 | |
|         assert index.reindex(labels)[0].name == name
 | |
| 
 | |
|     @pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)])
 | |
|     def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels):
 | |
|         # GH7774
 | |
|         index = Index(list("abc"))
 | |
|         assert index.reindex(labels)[0].dtype.type == index.dtype.type
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "labels,dtype",
 | |
|         [
 | |
|             (DatetimeIndex([]), np.datetime64),
 | |
|         ],
 | |
|     )
 | |
|     def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype):
 | |
|         # GH7774
 | |
|         index = Index(list("abc"))
 | |
|         assert index.reindex(labels)[0].dtype.type == dtype
 | |
| 
 | |
|     def test_reindex_doesnt_preserve_type_if_target_is_empty_index_numeric(
 | |
|         self, any_real_numpy_dtype
 | |
|     ):
 | |
|         # GH7774
 | |
|         dtype = any_real_numpy_dtype
 | |
|         index = Index(list("abc"))
 | |
|         labels = Index([], dtype=dtype)
 | |
|         assert index.reindex(labels)[0].dtype == dtype
 | |
| 
 | |
|     def test_reindex_no_type_preserve_target_empty_mi(self):
 | |
|         index = Index(list("abc"))
 | |
|         result = index.reindex(
 | |
|             MultiIndex([Index([], np.int64), Index([], np.float64)], [[], []])
 | |
|         )[0]
 | |
|         assert result.levels[0].dtype.type == np.int64
 | |
|         assert result.levels[1].dtype.type == np.float64
 | |
| 
 | |
|     def test_reindex_ignoring_level(self):
 | |
|         # GH#35132
 | |
|         idx = Index([1, 2, 3], name="x")
 | |
|         idx2 = Index([1, 2, 3, 4], name="x")
 | |
|         expected = Index([1, 2, 3, 4], name="x")
 | |
|         result, _ = idx.reindex(idx2, level="x")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_groupby(self):
 | |
|         index = Index(range(5))
 | |
|         result = index.groupby(np.array([1, 1, 2, 2, 2]))
 | |
|         expected = {1: Index([0, 1]), 2: Index([2, 3, 4])}
 | |
| 
 | |
|         tm.assert_dict_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mi,expected",
 | |
|         [
 | |
|             (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])),
 | |
|             (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])),
 | |
|         ],
 | |
|     )
 | |
|     def test_equals_op_multiindex(self, mi, expected):
 | |
|         # GH9785
 | |
|         # test comparisons of multiindex
 | |
|         df = DataFrame(
 | |
|             [3, 6],
 | |
|             columns=["c"],
 | |
|             index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
 | |
|         )
 | |
| 
 | |
|         result = df.index == mi
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     def test_equals_op_multiindex_identify(self):
 | |
|         df = DataFrame(
 | |
|             [3, 6],
 | |
|             columns=["c"],
 | |
|             index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
 | |
|         )
 | |
| 
 | |
|         result = df.index == df.index
 | |
|         expected = np.array([True, True])
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]),
 | |
|             Index(["foo", "bar", "baz"]),
 | |
|         ],
 | |
|     )
 | |
|     def test_equals_op_mismatched_multiindex_raises(self, index):
 | |
|         df = DataFrame(
 | |
|             [3, 6],
 | |
|             columns=["c"],
 | |
|             index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
 | |
|         )
 | |
| 
 | |
|         with pytest.raises(ValueError, match="Lengths must match"):
 | |
|             df.index == index
 | |
| 
 | |
|     def test_equals_op_index_vs_mi_same_length(self, using_infer_string):
 | |
|         mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)])
 | |
|         index = Index(["foo", "bar", "baz"])
 | |
| 
 | |
|         result = mi == index
 | |
|         expected = np.array([False, False, False])
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "dt_conv, arg",
 | |
|         [
 | |
|             (pd.to_datetime, ["2000-01-01", "2000-01-02"]),
 | |
|             (pd.to_timedelta, ["01:02:03", "01:02:04"]),
 | |
|         ],
 | |
|     )
 | |
|     def test_dt_conversion_preserves_name(self, dt_conv, arg):
 | |
|         # GH 10875
 | |
|         index = Index(arg, name="label")
 | |
|         assert index.name == dt_conv(index).name
 | |
| 
 | |
|     def test_cached_properties_not_settable(self):
 | |
|         index = Index([1, 2, 3])
 | |
|         with pytest.raises(AttributeError, match="Can't set attribute"):
 | |
|             index.is_unique = False
 | |
| 
 | |
|     def test_tab_complete_warning(self, ip):
 | |
|         # https://github.com/pandas-dev/pandas/issues/16409
 | |
|         pytest.importorskip("IPython", minversion="6.0.0")
 | |
|         from IPython.core.completer import provisionalcompleter
 | |
| 
 | |
|         code = "import pandas as pd; idx = pd.Index([1, 2])"
 | |
|         ip.run_cell(code)
 | |
| 
 | |
|         # GH 31324 newer jedi version raises Deprecation warning;
 | |
|         #  appears resolved 2021-02-02
 | |
|         with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
 | |
|             with provisionalcompleter("ignore"):
 | |
|                 list(ip.Completer.completions("idx.", 4))
 | |
| 
 | |
|     def test_contains_method_removed(self, index):
 | |
|         # GH#30103 method removed for all types except IntervalIndex
 | |
|         if isinstance(index, IntervalIndex):
 | |
|             index.contains(1)
 | |
|         else:
 | |
|             msg = f"'{type(index).__name__}' object has no attribute 'contains'"
 | |
|             with pytest.raises(AttributeError, match=msg):
 | |
|                 index.contains(1)
 | |
| 
 | |
|     def test_sortlevel(self):
 | |
|         index = Index([5, 4, 3, 2, 1])
 | |
|         with pytest.raises(Exception, match="ascending must be a single bool value or"):
 | |
|             index.sortlevel(ascending="True")
 | |
| 
 | |
|         with pytest.raises(
 | |
|             Exception, match="ascending must be a list of bool values of length 1"
 | |
|         ):
 | |
|             index.sortlevel(ascending=[True, True])
 | |
| 
 | |
|         with pytest.raises(Exception, match="ascending must be a bool value"):
 | |
|             index.sortlevel(ascending=["True"])
 | |
| 
 | |
|         expected = Index([1, 2, 3, 4, 5])
 | |
|         result = index.sortlevel(ascending=[True])
 | |
|         tm.assert_index_equal(result[0], expected)
 | |
| 
 | |
|         expected = Index([1, 2, 3, 4, 5])
 | |
|         result = index.sortlevel(ascending=True)
 | |
|         tm.assert_index_equal(result[0], expected)
 | |
| 
 | |
|         expected = Index([5, 4, 3, 2, 1])
 | |
|         result = index.sortlevel(ascending=False)
 | |
|         tm.assert_index_equal(result[0], expected)
 | |
| 
 | |
|     def test_sortlevel_na_position(self):
 | |
|         # GH#51612
 | |
|         idx = Index([1, np.nan])
 | |
|         result = idx.sortlevel(na_position="first")[0]
 | |
|         expected = Index([np.nan, 1])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "periods, expected_results",
 | |
|         [
 | |
|             (1, [np.nan, 10, 10, 10, 10]),
 | |
|             (2, [np.nan, np.nan, 20, 20, 20]),
 | |
|             (3, [np.nan, np.nan, np.nan, 30, 30]),
 | |
|         ],
 | |
|     )
 | |
|     def test_index_diff(self, periods, expected_results):
 | |
|         # GH#19708
 | |
|         idx = Index([10, 20, 30, 40, 50])
 | |
|         result = idx.diff(periods)
 | |
|         expected = Index(expected_results)
 | |
| 
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "decimals, expected_results",
 | |
|         [
 | |
|             (0, [1.0, 2.0, 3.0]),
 | |
|             (1, [1.2, 2.3, 3.5]),
 | |
|             (2, [1.23, 2.35, 3.46]),
 | |
|         ],
 | |
|     )
 | |
|     def test_index_round(self, decimals, expected_results):
 | |
|         # GH#19708
 | |
|         idx = Index([1.234, 2.345, 3.456])
 | |
|         result = idx.round(decimals)
 | |
|         expected = Index(expected_results)
 | |
| 
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
| 
 | |
| class TestMixedIntIndex:
 | |
|     # Mostly the tests from common.py for which the results differ
 | |
|     # in py2 and py3 because ints and strings are uncomparable in py3
 | |
|     # (GH 13514)
 | |
|     @pytest.fixture
 | |
|     def simple_index(self) -> Index:
 | |
|         return Index([0, "a", 1, "b", 2, "c"])
 | |
| 
 | |
|     def test_argsort(self, simple_index):
 | |
|         index = simple_index
 | |
|         with pytest.raises(TypeError, match="'>|<' not supported"):
 | |
|             index.argsort()
 | |
| 
 | |
|     def test_numpy_argsort(self, simple_index):
 | |
|         index = simple_index
 | |
|         with pytest.raises(TypeError, match="'>|<' not supported"):
 | |
|             np.argsort(index)
 | |
| 
 | |
|     def test_copy_name(self, simple_index):
 | |
|         # Check that "name" argument passed at initialization is honoured
 | |
|         # GH12309
 | |
|         index = simple_index
 | |
| 
 | |
|         first = type(index)(index, copy=True, name="mario")
 | |
|         second = type(first)(first, copy=False)
 | |
| 
 | |
|         # Even though "copy=False", we want a new object.
 | |
|         assert first is not second
 | |
|         tm.assert_index_equal(first, second)
 | |
| 
 | |
|         assert first.name == "mario"
 | |
|         assert second.name == "mario"
 | |
| 
 | |
|         s1 = Series(2, index=first)
 | |
|         s2 = Series(3, index=second[:-1])
 | |
| 
 | |
|         s3 = s1 * s2
 | |
| 
 | |
|         assert s3.index.name == "mario"
 | |
| 
 | |
|     def test_copy_name2(self):
 | |
|         # Check that adding a "name" parameter to the copy is honored
 | |
|         # GH14302
 | |
|         index = Index([1, 2], name="MyName")
 | |
|         index1 = index.copy()
 | |
| 
 | |
|         tm.assert_index_equal(index, index1)
 | |
| 
 | |
|         index2 = index.copy(name="NewName")
 | |
|         tm.assert_index_equal(index, index2, check_names=False)
 | |
|         assert index.name == "MyName"
 | |
|         assert index2.name == "NewName"
 | |
| 
 | |
|     def test_unique_na(self):
 | |
|         idx = Index([2, np.nan, 2, 1], name="my_index")
 | |
|         expected = Index([2, np.nan, 1], name="my_index")
 | |
|         result = idx.unique()
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_logical_compat(self, simple_index):
 | |
|         index = simple_index
 | |
|         assert index.all() == index.values.all()
 | |
|         assert index.any() == index.values.any()
 | |
| 
 | |
|     @pytest.mark.parametrize("how", ["any", "all"])
 | |
|     @pytest.mark.parametrize("dtype", [None, object, "category"])
 | |
|     @pytest.mark.parametrize(
 | |
|         "vals,expected",
 | |
|         [
 | |
|             ([1, 2, 3], [1, 2, 3]),
 | |
|             ([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]),
 | |
|             ([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]),
 | |
|             (["A", "B", "C"], ["A", "B", "C"]),
 | |
|             (["A", np.nan, "B", "C"], ["A", "B", "C"]),
 | |
|         ],
 | |
|     )
 | |
|     def test_dropna(self, how, dtype, vals, expected):
 | |
|         # GH 6194
 | |
|         index = Index(vals, dtype=dtype)
 | |
|         result = index.dropna(how=how)
 | |
|         expected = Index(expected, dtype=dtype)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("how", ["any", "all"])
 | |
|     @pytest.mark.parametrize(
 | |
|         "index,expected",
 | |
|         [
 | |
|             (
 | |
|                 DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
 | |
|                 DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
 | |
|             ),
 | |
|             (
 | |
|                 DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]),
 | |
|                 DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
 | |
|             ),
 | |
|             (
 | |
|                 TimedeltaIndex(["1 days", "2 days", "3 days"]),
 | |
|                 TimedeltaIndex(["1 days", "2 days", "3 days"]),
 | |
|             ),
 | |
|             (
 | |
|                 TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]),
 | |
|                 TimedeltaIndex(["1 days", "2 days", "3 days"]),
 | |
|             ),
 | |
|             (
 | |
|                 PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
 | |
|                 PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
 | |
|             ),
 | |
|             (
 | |
|                 PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"),
 | |
|                 PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
 | |
|             ),
 | |
|         ],
 | |
|     )
 | |
|     def test_dropna_dt_like(self, how, index, expected):
 | |
|         result = index.dropna(how=how)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_dropna_invalid_how_raises(self):
 | |
|         msg = "invalid how option: xxx"
 | |
|         with pytest.raises(ValueError, match=msg):
 | |
|             Index([1, 2, 3]).dropna(how="xxx")
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "index",
 | |
|         [
 | |
|             Index([np.nan]),
 | |
|             Index([np.nan, 1]),
 | |
|             Index([1, 2, np.nan]),
 | |
|             Index(["a", "b", np.nan]),
 | |
|             pd.to_datetime(["NaT"]),
 | |
|             pd.to_datetime(["NaT", "2000-01-01"]),
 | |
|             pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]),
 | |
|             pd.to_timedelta(["1 day", "NaT"]),
 | |
|         ],
 | |
|     )
 | |
|     def test_is_monotonic_na(self, index):
 | |
|         assert index.is_monotonic_increasing is False
 | |
|         assert index.is_monotonic_decreasing is False
 | |
|         assert index._is_strictly_monotonic_increasing is False
 | |
|         assert index._is_strictly_monotonic_decreasing is False
 | |
| 
 | |
|     @pytest.mark.parametrize("dtype", ["f8", "m8[ns]", "M8[us]"])
 | |
|     @pytest.mark.parametrize("unique_first", [True, False])
 | |
|     def test_is_monotonic_unique_na(self, dtype, unique_first):
 | |
|         # GH 55755
 | |
|         index = Index([None, 1, 1], dtype=dtype)
 | |
|         if unique_first:
 | |
|             assert index.is_unique is False
 | |
|             assert index.is_monotonic_increasing is False
 | |
|             assert index.is_monotonic_decreasing is False
 | |
|         else:
 | |
|             assert index.is_monotonic_increasing is False
 | |
|             assert index.is_monotonic_decreasing is False
 | |
|             assert index.is_unique is False
 | |
| 
 | |
|     def test_int_name_format(self, frame_or_series):
 | |
|         index = Index(["a", "b", "c"], name=0)
 | |
|         result = frame_or_series(list(range(3)), index=index)
 | |
|         assert "0" in repr(result)
 | |
| 
 | |
|     def test_str_to_bytes_raises(self):
 | |
|         # GH 26447
 | |
|         index = Index([str(x) for x in range(10)])
 | |
|         msg = "^'str' object cannot be interpreted as an integer$"
 | |
|         with pytest.raises(TypeError, match=msg):
 | |
|             bytes(index)
 | |
| 
 | |
|     @pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning")
 | |
|     def test_index_with_tuple_bool(self):
 | |
|         # GH34123
 | |
|         # TODO: also this op right now produces FutureWarning from numpy
 | |
|         #  https://github.com/numpy/numpy/issues/11521
 | |
|         idx = Index([("a", "b"), ("b", "c"), ("c", "a")])
 | |
|         result = idx == ("c", "a")
 | |
|         expected = np.array([False, False, True])
 | |
|         tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
| 
 | |
| class TestIndexUtils:
 | |
|     @pytest.mark.parametrize(
 | |
|         "data, names, expected",
 | |
|         [
 | |
|             ([[1, 2, 3]], None, Index([1, 2, 3])),
 | |
|             ([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")),
 | |
|             (
 | |
|                 [["a", "a"], ["c", "d"]],
 | |
|                 None,
 | |
|                 MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]),
 | |
|             ),
 | |
|             (
 | |
|                 [["a", "a"], ["c", "d"]],
 | |
|                 ["L1", "L2"],
 | |
|                 MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]),
 | |
|             ),
 | |
|         ],
 | |
|     )
 | |
|     def test_ensure_index_from_sequences(self, data, names, expected):
 | |
|         result = ensure_index_from_sequences(data, names)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_ensure_index_mixed_closed_intervals(self):
 | |
|         # GH27172
 | |
|         intervals = [
 | |
|             pd.Interval(0, 1, closed="left"),
 | |
|             pd.Interval(1, 2, closed="right"),
 | |
|             pd.Interval(2, 3, closed="neither"),
 | |
|             pd.Interval(3, 4, closed="both"),
 | |
|         ]
 | |
|         result = ensure_index(intervals)
 | |
|         expected = Index(intervals, dtype=object)
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_ensure_index_uint64(self):
 | |
|         # with both 0 and a large-uint64, np.array will infer to float64
 | |
|         #  https://github.com/numpy/numpy/issues/19146
 | |
|         #  but a more accurate choice would be uint64
 | |
|         values = [0, np.iinfo(np.uint64).max]
 | |
| 
 | |
|         result = ensure_index(values)
 | |
|         assert list(result) == values
 | |
| 
 | |
|         expected = Index(values, dtype="uint64")
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
|     def test_get_combined_index(self):
 | |
|         result = _get_combined_index([])
 | |
|         expected = Index([])
 | |
|         tm.assert_index_equal(result, expected)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "opname",
 | |
|     [
 | |
|         "eq",
 | |
|         "ne",
 | |
|         "le",
 | |
|         "lt",
 | |
|         "ge",
 | |
|         "gt",
 | |
|         "add",
 | |
|         "radd",
 | |
|         "sub",
 | |
|         "rsub",
 | |
|         "mul",
 | |
|         "rmul",
 | |
|         "truediv",
 | |
|         "rtruediv",
 | |
|         "floordiv",
 | |
|         "rfloordiv",
 | |
|         "pow",
 | |
|         "rpow",
 | |
|         "mod",
 | |
|         "divmod",
 | |
|     ],
 | |
| )
 | |
| def test_generated_op_names(opname, index):
 | |
|     opname = f"__{opname}__"
 | |
|     method = getattr(index, opname)
 | |
|     assert method.__name__ == opname
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "klass",
 | |
|     [
 | |
|         partial(CategoricalIndex, data=[1]),
 | |
|         partial(DatetimeIndex, data=["2020-01-01"]),
 | |
|         partial(PeriodIndex, data=["2020-01-01"]),
 | |
|         partial(TimedeltaIndex, data=["1 day"]),
 | |
|         partial(RangeIndex, data=range(1)),
 | |
|         partial(IntervalIndex, data=[pd.Interval(0, 1)]),
 | |
|         partial(Index, data=["a"], dtype=object),
 | |
|         partial(MultiIndex, levels=[1], codes=[0]),
 | |
|     ],
 | |
| )
 | |
| def test_index_subclass_constructor_wrong_kwargs(klass):
 | |
|     # GH #19348
 | |
|     with pytest.raises(TypeError, match="unexpected keyword argument"):
 | |
|         klass(foo="bar")
 | |
| 
 | |
| 
 | |
| def test_deprecated_fastpath():
 | |
|     msg = "[Uu]nexpected keyword argument"
 | |
|     with pytest.raises(TypeError, match=msg):
 | |
|         Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True)
 | |
| 
 | |
|     with pytest.raises(TypeError, match=msg):
 | |
|         Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True)
 | |
| 
 | |
|     with pytest.raises(TypeError, match=msg):
 | |
|         RangeIndex(0, 5, 2, name="test", fastpath=True)
 | |
| 
 | |
|     with pytest.raises(TypeError, match=msg):
 | |
|         CategoricalIndex(["a", "b", "c"], name="test", fastpath=True)
 | |
| 
 | |
| 
 | |
| def test_shape_of_invalid_index():
 | |
|     # Pre-2.0, it was possible to create "invalid" index objects backed by
 | |
|     # a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125
 | |
|     # about this). However, as long as this is not solved in general,this test ensures
 | |
|     # that the returned shape is consistent with this underlying array for
 | |
|     # compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775)
 | |
|     idx = Index([0, 1, 2, 3])
 | |
|     with pytest.raises(ValueError, match="Multi-dimensional indexing"):
 | |
|         # GH#30588 multi-dimensional indexing deprecated
 | |
|         idx[:, None]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("dtype", [None, np.int64, np.uint64, np.float64])
 | |
| def test_validate_1d_input(dtype):
 | |
|     # GH#27125 check that we do not have >1-dimensional input
 | |
|     msg = "Index data must be 1-dimensional"
 | |
| 
 | |
|     arr = np.arange(8).reshape(2, 2, 2)
 | |
|     with pytest.raises(ValueError, match=msg):
 | |
|         Index(arr, dtype=dtype)
 | |
| 
 | |
|     df = DataFrame(arr.reshape(4, 2))
 | |
|     with pytest.raises(ValueError, match=msg):
 | |
|         Index(df, dtype=dtype)
 | |
| 
 | |
|     # GH#13601 trying to assign a multi-dimensional array to an index is not allowed
 | |
|     ser = Series(0, range(4))
 | |
|     with pytest.raises(ValueError, match=msg):
 | |
|         ser.index = np.array([[2, 3]] * 4, dtype=dtype)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "klass, extra_kwargs",
 | |
|     [
 | |
|         [Index, {}],
 | |
|         *[[lambda x: Index(x, dtype=dtyp), {}] for dtyp in tm.ALL_REAL_NUMPY_DTYPES],
 | |
|         [DatetimeIndex, {}],
 | |
|         [TimedeltaIndex, {}],
 | |
|         [PeriodIndex, {"freq": "Y"}],
 | |
|     ],
 | |
| )
 | |
| def test_construct_from_memoryview(klass, extra_kwargs):
 | |
|     # GH 13120
 | |
|     result = klass(memoryview(np.arange(2000, 2005)), **extra_kwargs)
 | |
|     expected = klass(list(range(2000, 2005)), **extra_kwargs)
 | |
|     tm.assert_index_equal(result, expected, exact=True)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("op", [operator.lt, operator.gt])
 | |
| def test_nan_comparison_same_object(op):
 | |
|     # GH#47105
 | |
|     idx = Index([np.nan])
 | |
|     expected = np.array([False])
 | |
| 
 | |
|     result = op(idx, idx)
 | |
|     tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
|     result = op(idx, idx.copy())
 | |
|     tm.assert_numpy_array_equal(result, expected)
 | |
| 
 | |
| 
 | |
| @td.skip_if_no("pyarrow")
 | |
| def test_is_monotonic_pyarrow_list_type():
 | |
|     # GH 57333
 | |
|     import pyarrow as pa
 | |
| 
 | |
|     idx = Index([[1], [2, 3]], dtype=pd.ArrowDtype(pa.list_(pa.int64())))
 | |
|     assert not idx.is_monotonic_increasing
 | |
|     assert not idx.is_monotonic_decreasing
 |