241 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pickle
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.ma.core import (
 | |
|     MaskedArray,
 | |
|     MaskType,
 | |
|     add,
 | |
|     allequal,
 | |
|     divide,
 | |
|     getmask,
 | |
|     hypot,
 | |
|     log,
 | |
|     masked,
 | |
|     masked_array,
 | |
|     masked_values,
 | |
|     nomask,
 | |
| )
 | |
| from numpy.ma.extras import mr_
 | |
| from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_raises
 | |
| 
 | |
| 
 | |
| class MMatrix(MaskedArray, np.matrix,):
 | |
| 
 | |
|     def __new__(cls, data, mask=nomask):
 | |
|         mat = np.matrix(data)
 | |
|         _data = MaskedArray.__new__(cls, data=mat, mask=mask)
 | |
|         return _data
 | |
| 
 | |
|     def __array_finalize__(self, obj):
 | |
|         np.matrix.__array_finalize__(self, obj)
 | |
|         MaskedArray.__array_finalize__(self, obj)
 | |
| 
 | |
|     @property
 | |
|     def _series(self):
 | |
|         _view = self.view(MaskedArray)
 | |
|         _view._sharedmask = False
 | |
|         return _view
 | |
| 
 | |
| 
 | |
| class TestMaskedMatrix:
 | |
|     def test_matrix_indexing(self):
 | |
|         # Tests conversions and indexing
 | |
|         x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
 | |
|         x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
 | |
|         x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
 | |
|         x4 = masked_array(x1)
 | |
|         # test conversion to strings
 | |
|         str(x2)  # raises?
 | |
|         repr(x2)  # raises?
 | |
|         # tests of indexing
 | |
|         assert_(type(x2[1, 0]) is type(x1[1, 0]))
 | |
|         assert_(x1[1, 0] == x2[1, 0])
 | |
|         assert_(x2[1, 1] is masked)
 | |
|         assert_equal(x1[0, 2], x2[0, 2])
 | |
|         assert_equal(x1[0, 1:], x2[0, 1:])
 | |
|         assert_equal(x1[:, 2], x2[:, 2])
 | |
|         assert_equal(x1[:], x2[:])
 | |
|         assert_equal(x1[1:], x3[1:])
 | |
|         x1[0, 2] = 9
 | |
|         x2[0, 2] = 9
 | |
|         assert_equal(x1, x2)
 | |
|         x1[0, 1:] = 99
 | |
|         x2[0, 1:] = 99
 | |
|         assert_equal(x1, x2)
 | |
|         x2[0, 1] = masked
 | |
|         assert_equal(x1, x2)
 | |
|         x2[0, 1:] = masked
 | |
|         assert_equal(x1, x2)
 | |
|         x2[0, :] = x1[0, :]
 | |
|         x2[0, 1] = masked
 | |
|         assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
 | |
|         x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
 | |
|         assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
 | |
|         assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
 | |
|         x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
 | |
|         assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
 | |
|         assert_(allequal(x4[1], masked_array([1, 2, 3])))
 | |
|         x1 = np.matrix(np.arange(5) * 1.0)
 | |
|         x2 = masked_values(x1, 3.0)
 | |
|         assert_equal(x1, x2)
 | |
|         assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
 | |
|                          x2.mask))
 | |
|         assert_equal(3.0, x2.fill_value)
 | |
| 
 | |
|     def test_pickling_subbaseclass(self):
 | |
|         # Test pickling w/ a subclass of ndarray
 | |
|         a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
 | |
|         for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
 | |
|             a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
 | |
|             assert_equal(a_pickled._mask, a._mask)
 | |
|             assert_equal(a_pickled, a)
 | |
|             assert_(isinstance(a_pickled._data, np.matrix))
 | |
| 
 | |
|     def test_count_mean_with_matrix(self):
 | |
|         m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
 | |
| 
 | |
|         assert_equal(m.count(axis=0).shape, (1, 2))
 | |
|         assert_equal(m.count(axis=1).shape, (2, 1))
 | |
| 
 | |
|         # Make sure broadcasting inside mean and var work
 | |
|         assert_equal(m.mean(axis=0), [[2., 3.]])
 | |
|         assert_equal(m.mean(axis=1), [[1.5], [3.5]])
 | |
| 
 | |
|     def test_flat(self):
 | |
|         # Test that flat can return items even for matrices [#4585, #4615]
 | |
|         # test simple access
 | |
|         test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
 | |
|         assert_equal(test.flat[1], 2)
 | |
|         assert_equal(test.flat[2], masked)
 | |
|         assert_(np.all(test.flat[0:2] == test[0, 0:2]))
 | |
|         # Test flat on masked_matrices
 | |
|         test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
 | |
|         test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
 | |
|         control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
 | |
|         assert_equal(test, control)
 | |
|         # Test setting
 | |
|         test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
 | |
|         testflat = test.flat
 | |
|         testflat[:] = testflat[[2, 1, 0]]
 | |
|         assert_equal(test, control)
 | |
|         testflat[0] = 9
 | |
|         # test that matrices keep the correct shape (#4615)
 | |
|         a = masked_array(np.matrix(np.eye(2)), mask=0)
 | |
|         b = a.flat
 | |
|         b01 = b[:2]
 | |
|         assert_equal(b01.data, np.array([[1., 0.]]))
 | |
|         assert_equal(b01.mask, np.array([[False, False]]))
 | |
| 
 | |
|     def test_allany_onmatrices(self):
 | |
|         x = np.array([[0.13, 0.26, 0.90],
 | |
|                       [0.28, 0.33, 0.63],
 | |
|                       [0.31, 0.87, 0.70]])
 | |
|         X = np.matrix(x)
 | |
|         m = np.array([[True, False, False],
 | |
|                       [False, False, False],
 | |
|                       [True, True, False]], dtype=np.bool)
 | |
|         mX = masked_array(X, mask=m)
 | |
|         mXbig = (mX > 0.5)
 | |
|         mXsmall = (mX < 0.5)
 | |
| 
 | |
|         assert_(not mXbig.all())
 | |
|         assert_(mXbig.any())
 | |
|         assert_equal(mXbig.all(0), np.matrix([False, False, True]))
 | |
|         assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
 | |
|         assert_equal(mXbig.any(0), np.matrix([False, False, True]))
 | |
|         assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
 | |
| 
 | |
|         assert_(not mXsmall.all())
 | |
|         assert_(mXsmall.any())
 | |
|         assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
 | |
|         assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
 | |
|         assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
 | |
|         assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
 | |
| 
 | |
|     def test_compressed(self):
 | |
|         a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
 | |
|         b = a.compressed()
 | |
|         assert_equal(b, a)
 | |
|         assert_(isinstance(b, np.matrix))
 | |
|         a[0, 0] = masked
 | |
|         b = a.compressed()
 | |
|         assert_equal(b, [[2, 3, 4]])
 | |
| 
 | |
|     def test_ravel(self):
 | |
|         a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
 | |
|         aravel = a.ravel()
 | |
|         assert_equal(aravel.shape, (1, 5))
 | |
|         assert_equal(aravel._mask.shape, a.shape)
 | |
| 
 | |
|     def test_view(self):
 | |
|         # Test view w/ flexible dtype
 | |
|         iterator = list(zip(np.arange(10), np.random.rand(10)))
 | |
|         data = np.array(iterator)
 | |
|         a = masked_array(iterator, dtype=[('a', float), ('b', float)])
 | |
|         a.mask[0] = (1, 0)
 | |
|         test = a.view((float, 2), np.matrix)
 | |
|         assert_equal(test, data)
 | |
|         assert_(isinstance(test, np.matrix))
 | |
|         assert_(not isinstance(test, MaskedArray))
 | |
| 
 | |
| 
 | |
| class TestSubclassing:
 | |
|     # Test suite for masked subclasses of ndarray.
 | |
| 
 | |
|     def setup_method(self):
 | |
|         x = np.arange(5, dtype='float')
 | |
|         mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
 | |
|         self.data = (x, mx)
 | |
| 
 | |
|     def test_maskedarray_subclassing(self):
 | |
|         # Tests subclassing MaskedArray
 | |
|         (x, mx) = self.data
 | |
|         assert_(isinstance(mx._data, np.matrix))
 | |
| 
 | |
|     def test_masked_unary_operations(self):
 | |
|         # Tests masked_unary_operation
 | |
|         (x, mx) = self.data
 | |
|         with np.errstate(divide='ignore'):
 | |
|             assert_(isinstance(log(mx), MMatrix))
 | |
|             assert_equal(log(x), np.log(x))
 | |
| 
 | |
|     def test_masked_binary_operations(self):
 | |
|         # Tests masked_binary_operation
 | |
|         (x, mx) = self.data
 | |
|         # Result should be a MMatrix
 | |
|         assert_(isinstance(add(mx, mx), MMatrix))
 | |
|         assert_(isinstance(add(mx, x), MMatrix))
 | |
|         # Result should work
 | |
|         assert_equal(add(mx, x), mx + x)
 | |
|         assert_(isinstance(add(mx, mx)._data, np.matrix))
 | |
|         with assert_raises(TypeError):
 | |
|             add.outer(mx, mx)
 | |
|         assert_(isinstance(hypot(mx, mx), MMatrix))
 | |
|         assert_(isinstance(hypot(mx, x), MMatrix))
 | |
| 
 | |
|     def test_masked_binary_operations2(self):
 | |
|         # Tests domained_masked_binary_operation
 | |
|         (x, mx) = self.data
 | |
|         xmx = masked_array(mx.data.__array__(), mask=mx.mask)
 | |
|         assert_(isinstance(divide(mx, mx), MMatrix))
 | |
|         assert_(isinstance(divide(mx, x), MMatrix))
 | |
|         assert_equal(divide(mx, mx), divide(xmx, xmx))
 | |
| 
 | |
| class TestConcatenator:
 | |
|     # Tests for mr_, the equivalent of r_ for masked arrays.
 | |
| 
 | |
|     def test_matrix_builder(self):
 | |
|         assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
 | |
| 
 | |
|     def test_matrix(self):
 | |
|         # Test consistency with unmasked version.  If we ever deprecate
 | |
|         # matrix, this test should either still pass, or both actual and
 | |
|         # expected should fail to be build.
 | |
|         actual = mr_['r', 1, 2, 3]
 | |
|         expected = np.ma.array(np.r_['r', 1, 2, 3])
 | |
|         assert_array_equal(actual, expected)
 | |
| 
 | |
|         # outer type is masked array, inner type is matrix
 | |
|         assert_equal(type(actual), type(expected))
 | |
|         assert_equal(type(actual.data), type(expected.data))
 |