361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Tests of interaction of matrix with other parts of numpy.
 | |
| 
 | |
| Note that tests with MaskedArray and linalg are done in separate files.
 | |
| """
 | |
| import textwrap
 | |
| import warnings
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.testing import (
 | |
|     assert_,
 | |
|     assert_almost_equal,
 | |
|     assert_array_almost_equal,
 | |
|     assert_array_equal,
 | |
|     assert_equal,
 | |
|     assert_raises,
 | |
|     assert_raises_regex,
 | |
| )
 | |
| 
 | |
| 
 | |
| def test_fancy_indexing():
 | |
|     # The matrix class messes with the shape. While this is always
 | |
|     # weird (getitem is not used, it does not have setitem nor knows
 | |
|     # about fancy indexing), this tests gh-3110
 | |
|     # 2018-04-29: moved here from core.tests.test_index.
 | |
|     m = np.matrix([[1, 2], [3, 4]])
 | |
| 
 | |
|     assert_(isinstance(m[[0, 1, 0], :], np.matrix))
 | |
| 
 | |
|     # gh-3110. Note the transpose currently because matrices do *not*
 | |
|     # support dimension fixing for fancy indexing correctly.
 | |
|     x = np.asmatrix(np.arange(50).reshape(5, 10))
 | |
|     assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
 | |
| 
 | |
| 
 | |
| def test_polynomial_mapdomain():
 | |
|     # test that polynomial preserved matrix subtype.
 | |
|     # 2018-04-29: moved here from polynomial.tests.polyutils.
 | |
|     dom1 = [0, 4]
 | |
|     dom2 = [1, 3]
 | |
|     x = np.matrix([dom1, dom1])
 | |
|     res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
 | |
|     assert_(isinstance(res, np.matrix))
 | |
| 
 | |
| 
 | |
| def test_sort_matrix_none():
 | |
|     # 2018-04-29: moved here from core.tests.test_multiarray
 | |
|     a = np.matrix([[2, 1, 0]])
 | |
|     actual = np.sort(a, axis=None)
 | |
|     expected = np.matrix([[0, 1, 2]])
 | |
|     assert_equal(actual, expected)
 | |
|     assert_(type(expected) is np.matrix)
 | |
| 
 | |
| 
 | |
| def test_partition_matrix_none():
 | |
|     # gh-4301
 | |
|     # 2018-04-29: moved here from core.tests.test_multiarray
 | |
|     a = np.matrix([[2, 1, 0]])
 | |
|     actual = np.partition(a, 1, axis=None)
 | |
|     expected = np.matrix([[0, 1, 2]])
 | |
|     assert_equal(actual, expected)
 | |
|     assert_(type(expected) is np.matrix)
 | |
| 
 | |
| 
 | |
| def test_dot_scalar_and_matrix_of_objects():
 | |
|     # Ticket #2469
 | |
|     # 2018-04-29: moved here from core.tests.test_multiarray
 | |
|     arr = np.matrix([1, 2], dtype=object)
 | |
|     desired = np.matrix([[3, 6]], dtype=object)
 | |
|     assert_equal(np.dot(arr, 3), desired)
 | |
|     assert_equal(np.dot(3, arr), desired)
 | |
| 
 | |
| 
 | |
| def test_inner_scalar_and_matrix():
 | |
|     # 2018-04-29: moved here from core.tests.test_multiarray
 | |
|     for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
 | |
|         sca = np.array(3, dtype=dt)[()]
 | |
|         arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
 | |
|         desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
 | |
|         assert_equal(np.inner(arr, sca), desired)
 | |
|         assert_equal(np.inner(sca, arr), desired)
 | |
| 
 | |
| 
 | |
| def test_inner_scalar_and_matrix_of_objects():
 | |
|     # Ticket #4482
 | |
|     # 2018-04-29: moved here from core.tests.test_multiarray
 | |
|     arr = np.matrix([1, 2], dtype=object)
 | |
|     desired = np.matrix([[3, 6]], dtype=object)
 | |
|     assert_equal(np.inner(arr, 3), desired)
 | |
|     assert_equal(np.inner(3, arr), desired)
 | |
| 
 | |
| 
 | |
| def test_iter_allocate_output_subtype():
 | |
|     # Make sure that the subtype with priority wins
 | |
|     # 2018-04-29: moved here from core.tests.test_nditer, given the
 | |
|     # matrix specific shape test.
 | |
| 
 | |
|     # matrix vs ndarray
 | |
|     a = np.matrix([[1, 2], [3, 4]])
 | |
|     b = np.arange(4).reshape(2, 2).T
 | |
|     i = np.nditer([a, b, None], [],
 | |
|                   [['readonly'], ['readonly'], ['writeonly', 'allocate']])
 | |
|     assert_(type(i.operands[2]) is np.matrix)
 | |
|     assert_(type(i.operands[2]) is not np.ndarray)
 | |
|     assert_equal(i.operands[2].shape, (2, 2))
 | |
| 
 | |
|     # matrix always wants things to be 2D
 | |
|     b = np.arange(4).reshape(1, 2, 2)
 | |
|     assert_raises(RuntimeError, np.nditer, [a, b, None], [],
 | |
|                   [['readonly'], ['readonly'], ['writeonly', 'allocate']])
 | |
|     # but if subtypes are disabled, the result can still work
 | |
|     i = np.nditer([a, b, None], [],
 | |
|                   [['readonly'], ['readonly'],
 | |
|                    ['writeonly', 'allocate', 'no_subtype']])
 | |
|     assert_(type(i.operands[2]) is np.ndarray)
 | |
|     assert_(type(i.operands[2]) is not np.matrix)
 | |
|     assert_equal(i.operands[2].shape, (1, 2, 2))
 | |
| 
 | |
| 
 | |
| def like_function():
 | |
|     # 2018-04-29: moved here from core.tests.test_numeric
 | |
|     a = np.matrix([[1, 2], [3, 4]])
 | |
|     for like_function in np.zeros_like, np.ones_like, np.empty_like:
 | |
|         b = like_function(a)
 | |
|         assert_(type(b) is np.matrix)
 | |
| 
 | |
|         c = like_function(a, subok=False)
 | |
|         assert_(type(c) is not np.matrix)
 | |
| 
 | |
| 
 | |
| def test_array_astype():
 | |
|     # 2018-04-29: copied here from core.tests.test_api
 | |
|     # subok=True passes through a matrix
 | |
|     a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
 | |
|     b = a.astype('f4', subok=True, copy=False)
 | |
|     assert_(a is b)
 | |
| 
 | |
|     # subok=True is default, and creates a subtype on a cast
 | |
|     b = a.astype('i4', copy=False)
 | |
|     assert_equal(a, b)
 | |
|     assert_equal(type(b), np.matrix)
 | |
| 
 | |
|     # subok=False never returns a matrix
 | |
|     b = a.astype('f4', subok=False, copy=False)
 | |
|     assert_equal(a, b)
 | |
|     assert_(not (a is b))
 | |
|     assert_(type(b) is not np.matrix)
 | |
| 
 | |
| 
 | |
| def test_stack():
 | |
|     # 2018-04-29: copied here from core.tests.test_shape_base
 | |
|     # check np.matrix cannot be stacked
 | |
|     m = np.matrix([[1, 2], [3, 4]])
 | |
|     assert_raises_regex(ValueError, 'shape too large to be a matrix',
 | |
|                         np.stack, [m, m])
 | |
| 
 | |
| 
 | |
| def test_object_scalar_multiply():
 | |
|     # Tickets #2469 and #4482
 | |
|     # 2018-04-29: moved here from core.tests.test_ufunc
 | |
|     arr = np.matrix([1, 2], dtype=object)
 | |
|     desired = np.matrix([[3, 6]], dtype=object)
 | |
|     assert_equal(np.multiply(arr, 3), desired)
 | |
|     assert_equal(np.multiply(3, arr), desired)
 | |
| 
 | |
| 
 | |
| def test_nanfunctions_matrices():
 | |
|     # Check that it works and that type and
 | |
|     # shape are preserved
 | |
|     # 2018-04-29: moved here from core.tests.test_nanfunctions
 | |
|     mat = np.matrix(np.eye(3))
 | |
|     for f in [np.nanmin, np.nanmax]:
 | |
|         res = f(mat, axis=0)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (1, 3))
 | |
|         res = f(mat, axis=1)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (3, 1))
 | |
|         res = f(mat)
 | |
|         assert_(np.isscalar(res))
 | |
|     # check that rows of nan are dealt with for subclasses (#4628)
 | |
|     mat[1] = np.nan
 | |
|     for f in [np.nanmin, np.nanmax]:
 | |
|         with warnings.catch_warnings(record=True) as w:
 | |
|             warnings.simplefilter('always')
 | |
|             res = f(mat, axis=0)
 | |
|             assert_(isinstance(res, np.matrix))
 | |
|             assert_(not np.any(np.isnan(res)))
 | |
|             assert_(len(w) == 0)
 | |
| 
 | |
|         with warnings.catch_warnings(record=True) as w:
 | |
|             warnings.simplefilter('always')
 | |
|             res = f(mat, axis=1)
 | |
|             assert_(isinstance(res, np.matrix))
 | |
|             assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
 | |
|                     and not np.isnan(res[2, 0]))
 | |
|             assert_(len(w) == 1, 'no warning raised')
 | |
|             assert_(issubclass(w[0].category, RuntimeWarning))
 | |
| 
 | |
|         with warnings.catch_warnings(record=True) as w:
 | |
|             warnings.simplefilter('always')
 | |
|             res = f(mat)
 | |
|             assert_(np.isscalar(res))
 | |
|             assert_(res != np.nan)
 | |
|             assert_(len(w) == 0)
 | |
| 
 | |
| 
 | |
| def test_nanfunctions_matrices_general():
 | |
|     # Check that it works and that type and
 | |
|     # shape are preserved
 | |
|     # 2018-04-29: moved here from core.tests.test_nanfunctions
 | |
|     mat = np.matrix(np.eye(3))
 | |
|     for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
 | |
|               np.nanmean, np.nanvar, np.nanstd):
 | |
|         res = f(mat, axis=0)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (1, 3))
 | |
|         res = f(mat, axis=1)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (3, 1))
 | |
|         res = f(mat)
 | |
|         assert_(np.isscalar(res))
 | |
| 
 | |
|     for f in np.nancumsum, np.nancumprod:
 | |
|         res = f(mat, axis=0)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (3, 3))
 | |
|         res = f(mat, axis=1)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (3, 3))
 | |
|         res = f(mat)
 | |
|         assert_(isinstance(res, np.matrix))
 | |
|         assert_(res.shape == (1, 3 * 3))
 | |
| 
 | |
| 
 | |
| def test_average_matrix():
 | |
|     # 2018-04-29: moved here from core.tests.test_function_base.
 | |
|     y = np.matrix(np.random.rand(5, 5))
 | |
|     assert_array_equal(y.mean(0), np.average(y, 0))
 | |
| 
 | |
|     a = np.matrix([[1, 2], [3, 4]])
 | |
|     w = np.matrix([[1, 2], [3, 4]])
 | |
| 
 | |
|     r = np.average(a, axis=0, weights=w)
 | |
|     assert_equal(type(r), np.matrix)
 | |
|     assert_equal(r, [[2.5, 10.0 / 3]])
 | |
| 
 | |
| 
 | |
| def test_dot_matrix():
 | |
|     # Test to make sure matrices give the same answer as ndarrays
 | |
|     # 2018-04-29: moved here from core.tests.test_function_base.
 | |
|     x = np.linspace(0, 5)
 | |
|     y = np.linspace(-5, 0)
 | |
|     mx = np.matrix(x)
 | |
|     my = np.matrix(y)
 | |
|     r = np.dot(x, y)
 | |
|     mr = np.dot(mx, my.T)
 | |
|     assert_almost_equal(mr, r)
 | |
| 
 | |
| 
 | |
| def test_ediff1d_matrix():
 | |
|     # 2018-04-29: moved here from core.tests.test_arraysetops.
 | |
|     assert isinstance(np.ediff1d(np.matrix(1)), np.matrix)
 | |
|     assert isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix)
 | |
| 
 | |
| 
 | |
| def test_apply_along_axis_matrix():
 | |
|     # this test is particularly malicious because matrix
 | |
|     # refuses to become 1d
 | |
|     # 2018-04-29: moved here from core.tests.test_shape_base.
 | |
|     def double(row):
 | |
|         return row * 2
 | |
| 
 | |
|     m = np.matrix([[0, 1], [2, 3]])
 | |
|     expected = np.matrix([[0, 2], [4, 6]])
 | |
| 
 | |
|     result = np.apply_along_axis(double, 0, m)
 | |
|     assert_(isinstance(result, np.matrix))
 | |
|     assert_array_equal(result, expected)
 | |
| 
 | |
|     result = np.apply_along_axis(double, 1, m)
 | |
|     assert_(isinstance(result, np.matrix))
 | |
|     assert_array_equal(result, expected)
 | |
| 
 | |
| 
 | |
| def test_kron_matrix():
 | |
|     # 2018-04-29: moved here from core.tests.test_shape_base.
 | |
|     a = np.ones([2, 2])
 | |
|     m = np.asmatrix(a)
 | |
|     assert_equal(type(np.kron(a, a)), np.ndarray)
 | |
|     assert_equal(type(np.kron(m, m)), np.matrix)
 | |
|     assert_equal(type(np.kron(a, m)), np.matrix)
 | |
|     assert_equal(type(np.kron(m, a)), np.matrix)
 | |
| 
 | |
| 
 | |
| class TestConcatenatorMatrix:
 | |
|     # 2018-04-29: moved here from core.tests.test_index_tricks.
 | |
|     def test_matrix(self):
 | |
|         a = [1, 2]
 | |
|         b = [3, 4]
 | |
| 
 | |
|         ab_r = np.r_['r', a, b]
 | |
|         ab_c = np.r_['c', a, b]
 | |
| 
 | |
|         assert_equal(type(ab_r), np.matrix)
 | |
|         assert_equal(type(ab_c), np.matrix)
 | |
| 
 | |
|         assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
 | |
|         assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
 | |
| 
 | |
|         assert_raises(ValueError, lambda: np.r_['rc', a, b])
 | |
| 
 | |
|     def test_matrix_scalar(self):
 | |
|         r = np.r_['r', [1, 2], 3]
 | |
|         assert_equal(type(r), np.matrix)
 | |
|         assert_equal(np.array(r), [[1, 2, 3]])
 | |
| 
 | |
|     def test_matrix_builder(self):
 | |
|         a = np.array([1])
 | |
|         b = np.array([2])
 | |
|         c = np.array([3])
 | |
|         d = np.array([4])
 | |
|         actual = np.r_['a, b; c, d']
 | |
|         expected = np.bmat([[a, b], [c, d]])
 | |
| 
 | |
|         assert_equal(actual, expected)
 | |
|         assert_equal(type(actual), type(expected))
 | |
| 
 | |
| 
 | |
| def test_array_equal_error_message_matrix():
 | |
|     # 2018-04-29: moved here from testing.tests.test_utils.
 | |
|     with pytest.raises(AssertionError) as exc_info:
 | |
|         assert_equal(np.array([1, 2]), np.matrix([1, 2]))
 | |
|     msg = str(exc_info.value)
 | |
|     msg_reference = textwrap.dedent("""\
 | |
| 
 | |
|     Arrays are not equal
 | |
| 
 | |
|     (shapes (2,), (1, 2) mismatch)
 | |
|      ACTUAL: array([1, 2])
 | |
|      DESIRED: matrix([[1, 2]])""")
 | |
|     assert_equal(msg, msg_reference)
 | |
| 
 | |
| 
 | |
| def test_array_almost_equal_matrix():
 | |
|     # Matrix slicing keeps things 2-D, while array does not necessarily.
 | |
|     # See gh-8452.
 | |
|     # 2018-04-29: moved here from testing.tests.test_utils.
 | |
|     m1 = np.matrix([[1., 2.]])
 | |
|     m2 = np.matrix([[1., np.nan]])
 | |
|     m3 = np.matrix([[1., -np.inf]])
 | |
|     m4 = np.matrix([[np.nan, np.inf]])
 | |
|     m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
 | |
|     for assert_func in assert_array_almost_equal, assert_almost_equal:
 | |
|         for m in m1, m2, m3, m4, m5:
 | |
|             assert_func(m, m)
 | |
|             a = np.array(m)
 | |
|             assert_func(a, m)
 | |
|             assert_func(m, a)
 |