470 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Tests suite for MaskedArray & subclassing.
 | |
| 
 | |
| :author: Pierre Gerard-Marchant
 | |
| :contact: pierregm_at_uga_dot_edu
 | |
| 
 | |
| """
 | |
| import numpy as np
 | |
| from numpy.lib.mixins import NDArrayOperatorsMixin
 | |
| from numpy.ma.core import (
 | |
|     MaskedArray,
 | |
|     add,
 | |
|     arange,
 | |
|     array,
 | |
|     asanyarray,
 | |
|     asarray,
 | |
|     divide,
 | |
|     hypot,
 | |
|     log,
 | |
|     masked,
 | |
|     masked_array,
 | |
|     nomask,
 | |
| )
 | |
| from numpy.ma.testutils import assert_equal
 | |
| from numpy.testing import assert_, assert_raises
 | |
| 
 | |
| # from numpy.ma.core import (
 | |
| 
 | |
| def assert_startswith(a, b):
 | |
|     # produces a better error message than assert_(a.startswith(b))
 | |
|     assert_equal(a[:len(b)], b)
 | |
| 
 | |
| class SubArray(np.ndarray):
 | |
|     # Defines a generic np.ndarray subclass, that stores some metadata
 | |
|     # in the  dictionary `info`.
 | |
|     def __new__(cls, arr, info={}):
 | |
|         x = np.asanyarray(arr).view(cls)
 | |
|         x.info = info.copy()
 | |
|         return x
 | |
| 
 | |
|     def __array_finalize__(self, obj):
 | |
|         super().__array_finalize__(obj)
 | |
|         self.info = getattr(obj, 'info', {}).copy()
 | |
| 
 | |
|     def __add__(self, other):
 | |
|         result = super().__add__(other)
 | |
|         result.info['added'] = result.info.get('added', 0) + 1
 | |
|         return result
 | |
| 
 | |
|     def __iadd__(self, other):
 | |
|         result = super().__iadd__(other)
 | |
|         result.info['iadded'] = result.info.get('iadded', 0) + 1
 | |
|         return result
 | |
| 
 | |
| 
 | |
| subarray = SubArray
 | |
| 
 | |
| 
 | |
| class SubMaskedArray(MaskedArray):
 | |
|     """Pure subclass of MaskedArray, keeping some info on subclass."""
 | |
|     def __new__(cls, info=None, **kwargs):
 | |
|         obj = super().__new__(cls, **kwargs)
 | |
|         obj._optinfo['info'] = info
 | |
|         return obj
 | |
| 
 | |
| 
 | |
| class MSubArray(SubArray, MaskedArray):
 | |
| 
 | |
|     def __new__(cls, data, info={}, mask=nomask):
 | |
|         subarr = SubArray(data, info)
 | |
|         _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
 | |
|         _data.info = subarr.info
 | |
|         return _data
 | |
| 
 | |
|     @property
 | |
|     def _series(self):
 | |
|         _view = self.view(MaskedArray)
 | |
|         _view._sharedmask = False
 | |
|         return _view
 | |
| 
 | |
| 
 | |
| msubarray = MSubArray
 | |
| 
 | |
| 
 | |
| # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
 | |
| # setting to non-class values (and thus np.ma.core.masked_print_option)
 | |
| # and overrides __array_wrap__, updating the info dict, to check that this
 | |
| # doesn't get destroyed by MaskedArray._update_from.  But this one also needs
 | |
| # its own iterator...
 | |
| class CSAIterator:
 | |
|     """
 | |
|     Flat iterator object that uses its own setter/getter
 | |
|     (works around ndarray.flat not propagating subclass setters/getters
 | |
|     see https://github.com/numpy/numpy/issues/4564)
 | |
|     roughly following MaskedIterator
 | |
|     """
 | |
|     def __init__(self, a):
 | |
|         self._original = a
 | |
|         self._dataiter = a.view(np.ndarray).flat
 | |
| 
 | |
|     def __iter__(self):
 | |
|         return self
 | |
| 
 | |
|     def __getitem__(self, indx):
 | |
|         out = self._dataiter.__getitem__(indx)
 | |
|         if not isinstance(out, np.ndarray):
 | |
|             out = out.__array__()
 | |
|         out = out.view(type(self._original))
 | |
|         return out
 | |
| 
 | |
|     def __setitem__(self, index, value):
 | |
|         self._dataiter[index] = self._original._validate_input(value)
 | |
| 
 | |
|     def __next__(self):
 | |
|         return next(self._dataiter).__array__().view(type(self._original))
 | |
| 
 | |
| 
 | |
| class ComplicatedSubArray(SubArray):
 | |
| 
 | |
|     def __str__(self):
 | |
|         return f'myprefix {self.view(SubArray)} mypostfix'
 | |
| 
 | |
|     def __repr__(self):
 | |
|         # Return a repr that does not start with 'name('
 | |
|         return f'<{self.__class__.__name__} {self}>'
 | |
| 
 | |
|     def _validate_input(self, value):
 | |
|         if not isinstance(value, ComplicatedSubArray):
 | |
|             raise ValueError("Can only set to MySubArray values")
 | |
|         return value
 | |
| 
 | |
|     def __setitem__(self, item, value):
 | |
|         # validation ensures direct assignment with ndarray or
 | |
|         # masked_print_option will fail
 | |
|         super().__setitem__(item, self._validate_input(value))
 | |
| 
 | |
|     def __getitem__(self, item):
 | |
|         # ensure getter returns our own class also for scalars
 | |
|         value = super().__getitem__(item)
 | |
|         if not isinstance(value, np.ndarray):  # scalar
 | |
|             value = value.__array__().view(ComplicatedSubArray)
 | |
|         return value
 | |
| 
 | |
|     @property
 | |
|     def flat(self):
 | |
|         return CSAIterator(self)
 | |
| 
 | |
|     @flat.setter
 | |
|     def flat(self, value):
 | |
|         y = self.ravel()
 | |
|         y[:] = value
 | |
| 
 | |
|     def __array_wrap__(self, obj, context=None, return_scalar=False):
 | |
|         obj = super().__array_wrap__(obj, context, return_scalar)
 | |
|         if context is not None and context[0] is np.multiply:
 | |
|             obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
 | |
| 
 | |
|         return obj
 | |
| 
 | |
| 
 | |
| class WrappedArray(NDArrayOperatorsMixin):
 | |
|     """
 | |
|     Wrapping a MaskedArray rather than subclassing to test that
 | |
|     ufunc deferrals are commutative.
 | |
|     See: https://github.com/numpy/numpy/issues/15200)
 | |
|     """
 | |
|     __slots__ = ('_array', 'attrs')
 | |
|     __array_priority__ = 20
 | |
| 
 | |
|     def __init__(self, array, **attrs):
 | |
|         self._array = array
 | |
|         self.attrs = attrs
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
 | |
| 
 | |
|     def __array__(self, dtype=None, copy=None):
 | |
|         return np.asarray(self._array)
 | |
| 
 | |
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
 | |
|         if method == '__call__':
 | |
|             inputs = [arg._array if isinstance(arg, self.__class__) else arg
 | |
|                       for arg in inputs]
 | |
|             return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
 | |
|         else:
 | |
|             return NotImplemented
 | |
| 
 | |
| 
 | |
| class TestSubclassing:
 | |
|     # Test suite for masked subclasses of ndarray.
 | |
| 
 | |
|     def setup_method(self):
 | |
|         x = np.arange(5, dtype='float')
 | |
|         mx = msubarray(x, mask=[0, 1, 0, 0, 0])
 | |
|         self.data = (x, mx)
 | |
| 
 | |
|     def test_data_subclassing(self):
 | |
|         # Tests whether the subclass is kept.
 | |
|         x = np.arange(5)
 | |
|         m = [0, 0, 1, 0, 0]
 | |
|         xsub = SubArray(x)
 | |
|         xmsub = masked_array(xsub, mask=m)
 | |
|         assert_(isinstance(xmsub, MaskedArray))
 | |
|         assert_equal(xmsub._data, xsub)
 | |
|         assert_(isinstance(xmsub._data, SubArray))
 | |
| 
 | |
|     def test_maskedarray_subclassing(self):
 | |
|         # Tests subclassing MaskedArray
 | |
|         (x, mx) = self.data
 | |
|         assert_(isinstance(mx._data, subarray))
 | |
| 
 | |
|     def test_masked_unary_operations(self):
 | |
|         # Tests masked_unary_operation
 | |
|         (x, mx) = self.data
 | |
|         with np.errstate(divide='ignore'):
 | |
|             assert_(isinstance(log(mx), msubarray))
 | |
|             assert_equal(log(x), np.log(x))
 | |
| 
 | |
|     def test_masked_binary_operations(self):
 | |
|         # Tests masked_binary_operation
 | |
|         (x, mx) = self.data
 | |
|         # Result should be a msubarray
 | |
|         assert_(isinstance(add(mx, mx), msubarray))
 | |
|         assert_(isinstance(add(mx, x), msubarray))
 | |
|         # Result should work
 | |
|         assert_equal(add(mx, x), mx + x)
 | |
|         assert_(isinstance(add(mx, mx)._data, subarray))
 | |
|         assert_(isinstance(add.outer(mx, mx), msubarray))
 | |
|         assert_(isinstance(hypot(mx, mx), msubarray))
 | |
|         assert_(isinstance(hypot(mx, x), msubarray))
 | |
| 
 | |
|     def test_masked_binary_operations2(self):
 | |
|         # Tests domained_masked_binary_operation
 | |
|         (x, mx) = self.data
 | |
|         xmx = masked_array(mx.data.__array__(), mask=mx.mask)
 | |
|         assert_(isinstance(divide(mx, mx), msubarray))
 | |
|         assert_(isinstance(divide(mx, x), msubarray))
 | |
|         assert_equal(divide(mx, mx), divide(xmx, xmx))
 | |
| 
 | |
|     def test_attributepropagation(self):
 | |
|         x = array(arange(5), mask=[0] + [1] * 4)
 | |
|         my = masked_array(subarray(x))
 | |
|         ym = msubarray(x)
 | |
|         #
 | |
|         z = (my + 1)
 | |
|         assert_(isinstance(z, MaskedArray))
 | |
|         assert_(not isinstance(z, MSubArray))
 | |
|         assert_(isinstance(z._data, SubArray))
 | |
|         assert_equal(z._data.info, {})
 | |
|         #
 | |
|         z = (ym + 1)
 | |
|         assert_(isinstance(z, MaskedArray))
 | |
|         assert_(isinstance(z, MSubArray))
 | |
|         assert_(isinstance(z._data, SubArray))
 | |
|         assert_(z._data.info['added'] > 0)
 | |
|         # Test that inplace methods from data get used (gh-4617)
 | |
|         ym += 1
 | |
|         assert_(isinstance(ym, MaskedArray))
 | |
|         assert_(isinstance(ym, MSubArray))
 | |
|         assert_(isinstance(ym._data, SubArray))
 | |
|         assert_(ym._data.info['iadded'] > 0)
 | |
|         #
 | |
|         ym._set_mask([1, 0, 0, 0, 1])
 | |
|         assert_equal(ym._mask, [1, 0, 0, 0, 1])
 | |
|         ym._series._set_mask([0, 0, 0, 0, 1])
 | |
|         assert_equal(ym._mask, [0, 0, 0, 0, 1])
 | |
|         #
 | |
|         xsub = subarray(x, info={'name': 'x'})
 | |
|         mxsub = masked_array(xsub)
 | |
|         assert_(hasattr(mxsub, 'info'))
 | |
|         assert_equal(mxsub.info, xsub.info)
 | |
| 
 | |
|     def test_subclasspreservation(self):
 | |
|         # Checks that masked_array(...,subok=True) preserves the class.
 | |
|         x = np.arange(5)
 | |
|         m = [0, 0, 1, 0, 0]
 | |
|         xinfo = list(zip(x, m))
 | |
|         xsub = MSubArray(x, mask=m, info={'xsub': xinfo})
 | |
|         #
 | |
|         mxsub = masked_array(xsub, subok=False)
 | |
|         assert_(not isinstance(mxsub, MSubArray))
 | |
|         assert_(isinstance(mxsub, MaskedArray))
 | |
|         assert_equal(mxsub._mask, m)
 | |
|         #
 | |
|         mxsub = asarray(xsub)
 | |
|         assert_(not isinstance(mxsub, MSubArray))
 | |
|         assert_(isinstance(mxsub, MaskedArray))
 | |
|         assert_equal(mxsub._mask, m)
 | |
|         #
 | |
|         mxsub = masked_array(xsub, subok=True)
 | |
|         assert_(isinstance(mxsub, MSubArray))
 | |
|         assert_equal(mxsub.info, xsub.info)
 | |
|         assert_equal(mxsub._mask, xsub._mask)
 | |
|         #
 | |
|         mxsub = asanyarray(xsub)
 | |
|         assert_(isinstance(mxsub, MSubArray))
 | |
|         assert_equal(mxsub.info, xsub.info)
 | |
|         assert_equal(mxsub._mask, m)
 | |
| 
 | |
|     def test_subclass_items(self):
 | |
|         """test that getter and setter go via baseclass"""
 | |
|         x = np.arange(5)
 | |
|         xcsub = ComplicatedSubArray(x)
 | |
|         mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
 | |
|         # getter should  return a ComplicatedSubArray, even for single item
 | |
|         # first check we wrote ComplicatedSubArray correctly
 | |
|         assert_(isinstance(xcsub[1], ComplicatedSubArray))
 | |
|         assert_(isinstance(xcsub[1, ...], ComplicatedSubArray))
 | |
|         assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
 | |
| 
 | |
|         # now that it propagates inside the MaskedArray
 | |
|         assert_(isinstance(mxcsub[1], ComplicatedSubArray))
 | |
|         assert_(isinstance(mxcsub[1, ...].data, ComplicatedSubArray))
 | |
|         assert_(mxcsub[0] is masked)
 | |
|         assert_(isinstance(mxcsub[0, ...].data, ComplicatedSubArray))
 | |
|         assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
 | |
| 
 | |
|         # also for flattened version (which goes via MaskedIterator)
 | |
|         assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
 | |
|         assert_(mxcsub.flat[0] is masked)
 | |
|         assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
 | |
| 
 | |
|         # setter should only work with ComplicatedSubArray input
 | |
|         # first check we wrote ComplicatedSubArray correctly
 | |
|         assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
 | |
|         # now that it propagates inside the MaskedArray
 | |
|         assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
 | |
|         assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
 | |
|         mxcsub[1] = xcsub[4]
 | |
|         mxcsub[1:4] = xcsub[1:4]
 | |
|         # also for flattened version (which goes via MaskedIterator)
 | |
|         assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
 | |
|         assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
 | |
|         mxcsub.flat[1] = xcsub[4]
 | |
|         mxcsub.flat[1:4] = xcsub[1:4]
 | |
| 
 | |
|     def test_subclass_nomask_items(self):
 | |
|         x = np.arange(5)
 | |
|         xcsub = ComplicatedSubArray(x)
 | |
|         mxcsub_nomask = masked_array(xcsub)
 | |
| 
 | |
|         assert_(isinstance(mxcsub_nomask[1, ...].data, ComplicatedSubArray))
 | |
|         assert_(isinstance(mxcsub_nomask[0, ...].data, ComplicatedSubArray))
 | |
| 
 | |
|         assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
 | |
|         assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
 | |
| 
 | |
|     def test_subclass_repr(self):
 | |
|         """test that repr uses the name of the subclass
 | |
|         and 'array' for np.ndarray"""
 | |
|         x = np.arange(5)
 | |
|         mx = masked_array(x, mask=[True, False, True, False, False])
 | |
|         assert_startswith(repr(mx), 'masked_array')
 | |
|         xsub = SubArray(x)
 | |
|         mxsub = masked_array(xsub, mask=[True, False, True, False, False])
 | |
|         assert_startswith(repr(mxsub),
 | |
|             f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
 | |
| 
 | |
|     def test_subclass_str(self):
 | |
|         """test str with subclass that has overridden str, setitem"""
 | |
|         # first without override
 | |
|         x = np.arange(5)
 | |
|         xsub = SubArray(x)
 | |
|         mxsub = masked_array(xsub, mask=[True, False, True, False, False])
 | |
|         assert_equal(str(mxsub), '[-- 1 -- 3 4]')
 | |
| 
 | |
|         xcsub = ComplicatedSubArray(x)
 | |
|         assert_raises(ValueError, xcsub.__setitem__, 0,
 | |
|                       np.ma.core.masked_print_option)
 | |
|         mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
 | |
|         assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
 | |
| 
 | |
|     def test_pure_subclass_info_preservation(self):
 | |
|         # Test that ufuncs and methods conserve extra information consistently;
 | |
|         # see gh-7122.
 | |
|         arr1 = SubMaskedArray('test', data=[1, 2, 3, 4, 5, 6])
 | |
|         arr2 = SubMaskedArray(data=[0, 1, 2, 3, 4, 5])
 | |
|         diff1 = np.subtract(arr1, arr2)
 | |
|         assert_('info' in diff1._optinfo)
 | |
|         assert_(diff1._optinfo['info'] == 'test')
 | |
|         diff2 = arr1 - arr2
 | |
|         assert_('info' in diff2._optinfo)
 | |
|         assert_(diff2._optinfo['info'] == 'test')
 | |
| 
 | |
| 
 | |
| class ArrayNoInheritance:
 | |
|     """Quantity-like class that does not inherit from ndarray"""
 | |
|     def __init__(self, data, units):
 | |
|         self.magnitude = data
 | |
|         self.units = units
 | |
| 
 | |
|     def __getattr__(self, attr):
 | |
|         return getattr(self.magnitude, attr)
 | |
| 
 | |
| 
 | |
| def test_array_no_inheritance():
 | |
|     data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
 | |
|     data_masked_units = ArrayNoInheritance(data_masked, 'meters')
 | |
| 
 | |
|     # Get the masked representation of the Quantity-like class
 | |
|     new_array = np.ma.array(data_masked_units)
 | |
|     assert_equal(data_masked.data, new_array.data)
 | |
|     assert_equal(data_masked.mask, new_array.mask)
 | |
|     # Test sharing the mask
 | |
|     data_masked.mask = [True, False, False]
 | |
|     assert_equal(data_masked.mask, new_array.mask)
 | |
|     assert_(new_array.sharedmask)
 | |
| 
 | |
|     # Get the masked representation of the Quantity-like class
 | |
|     new_array = np.ma.array(data_masked_units, copy=True)
 | |
|     assert_equal(data_masked.data, new_array.data)
 | |
|     assert_equal(data_masked.mask, new_array.mask)
 | |
|     # Test that the mask is not shared when copy=True
 | |
|     data_masked.mask = [True, False, True]
 | |
|     assert_equal([True, False, False], new_array.mask)
 | |
|     assert_(not new_array.sharedmask)
 | |
| 
 | |
|     # Get the masked representation of the Quantity-like class
 | |
|     new_array = np.ma.array(data_masked_units, keep_mask=False)
 | |
|     assert_equal(data_masked.data, new_array.data)
 | |
|     # The change did not affect the original mask
 | |
|     assert_equal(data_masked.mask, [True, False, True])
 | |
|     # Test that the mask is False and not shared when keep_mask=False
 | |
|     assert_(not new_array.mask)
 | |
|     assert_(not new_array.sharedmask)
 | |
| 
 | |
| 
 | |
| class TestClassWrapping:
 | |
|     # Test suite for classes that wrap MaskedArrays
 | |
| 
 | |
|     def setup_method(self):
 | |
|         m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
 | |
|         wm = WrappedArray(m)
 | |
|         self.data = (m, wm)
 | |
| 
 | |
|     def test_masked_unary_operations(self):
 | |
|         # Tests masked_unary_operation
 | |
|         (m, wm) = self.data
 | |
|         with np.errstate(divide='ignore'):
 | |
|             assert_(isinstance(np.log(wm), WrappedArray))
 | |
| 
 | |
|     def test_masked_binary_operations(self):
 | |
|         # Tests masked_binary_operation
 | |
|         (m, wm) = self.data
 | |
|         # Result should be a WrappedArray
 | |
|         assert_(isinstance(np.add(wm, wm), WrappedArray))
 | |
|         assert_(isinstance(np.add(m, wm), WrappedArray))
 | |
|         assert_(isinstance(np.add(wm, m), WrappedArray))
 | |
|         # add and '+' should call the same ufunc
 | |
|         assert_equal(np.add(m, wm), m + wm)
 | |
|         assert_(isinstance(np.hypot(m, wm), WrappedArray))
 | |
|         assert_(isinstance(np.hypot(wm, m), WrappedArray))
 | |
|         # Test domained binary operations
 | |
|         assert_(isinstance(np.divide(wm, m), WrappedArray))
 | |
|         assert_(isinstance(np.divide(m, wm), WrappedArray))
 | |
|         assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
 | |
|         # Test broadcasting
 | |
|         m2 = np.stack([m, m])
 | |
|         assert_(isinstance(np.divide(wm, m2), WrappedArray))
 | |
|         assert_(isinstance(np.divide(m2, wm), WrappedArray))
 | |
|         assert_equal(np.divide(m2, wm), np.divide(wm, m2))
 | |
| 
 | |
|     def test_mixins_have_slots(self):
 | |
|         mixin = NDArrayOperatorsMixin()
 | |
|         # Should raise an error
 | |
|         assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
 | |
| 
 | |
|         m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
 | |
|         wm = WrappedArray(m)
 | |
|         assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)
 |