2431 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2431 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """ Test functions for linalg module
 | |
| 
 | |
| """
 | |
| import itertools
 | |
| import os
 | |
| import subprocess
 | |
| import sys
 | |
| import textwrap
 | |
| import threading
 | |
| import traceback
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| import numpy as np
 | |
| from numpy import (
 | |
|     array,
 | |
|     asarray,
 | |
|     atleast_2d,
 | |
|     cdouble,
 | |
|     csingle,
 | |
|     dot,
 | |
|     double,
 | |
|     identity,
 | |
|     inf,
 | |
|     linalg,
 | |
|     matmul,
 | |
|     multiply,
 | |
|     single,
 | |
| )
 | |
| from numpy._core import swapaxes
 | |
| from numpy.exceptions import AxisError
 | |
| from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
 | |
| from numpy.linalg._linalg import _multi_dot_matrix_chain_order
 | |
| from numpy.testing import (
 | |
|     HAS_LAPACK64,
 | |
|     IS_WASM,
 | |
|     NOGIL_BUILD,
 | |
|     assert_,
 | |
|     assert_allclose,
 | |
|     assert_almost_equal,
 | |
|     assert_array_equal,
 | |
|     assert_equal,
 | |
|     assert_raises,
 | |
|     assert_raises_regex,
 | |
|     suppress_warnings,
 | |
| )
 | |
| 
 | |
| try:
 | |
|     import numpy.linalg.lapack_lite
 | |
| except ImportError:
 | |
|     # May be broken when numpy was built without BLAS/LAPACK present
 | |
|     # If so, ensure we don't break the whole test suite - the `lapack_lite`
 | |
|     # submodule should be removed, it's only used in two tests in this file.
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def consistent_subclass(out, in_):
 | |
|     # For ndarray subclass input, our output should have the same subclass
 | |
|     # (non-ndarray input gets converted to ndarray).
 | |
|     return type(out) is (type(in_) if isinstance(in_, np.ndarray)
 | |
|                          else np.ndarray)
 | |
| 
 | |
| 
 | |
| old_assert_almost_equal = assert_almost_equal
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
 | |
|     if asarray(a).dtype.type in (single, csingle):
 | |
|         decimal = single_decimal
 | |
|     else:
 | |
|         decimal = double_decimal
 | |
|     old_assert_almost_equal(a, b, decimal=decimal, **kw)
 | |
| 
 | |
| 
 | |
| def get_real_dtype(dtype):
 | |
|     return {single: single, double: double,
 | |
|             csingle: single, cdouble: double}[dtype]
 | |
| 
 | |
| 
 | |
| def get_complex_dtype(dtype):
 | |
|     return {single: csingle, double: cdouble,
 | |
|             csingle: csingle, cdouble: cdouble}[dtype]
 | |
| 
 | |
| 
 | |
| def get_rtol(dtype):
 | |
|     # Choose a safe rtol
 | |
|     if dtype in (single, csingle):
 | |
|         return 1e-5
 | |
|     else:
 | |
|         return 1e-11
 | |
| 
 | |
| 
 | |
| # used to categorize tests
 | |
| all_tags = {
 | |
|   'square', 'nonsquare', 'hermitian',  # mutually exclusive
 | |
|   'generalized', 'size-0', 'strided'  # optional additions
 | |
| }
 | |
| 
 | |
| 
 | |
| class LinalgCase:
 | |
|     def __init__(self, name, a, b, tags=set()):
 | |
|         """
 | |
|         A bundle of arguments to be passed to a test case, with an identifying
 | |
|         name, the operands a and b, and a set of tags to filter the tests
 | |
|         """
 | |
|         assert_(isinstance(name, str))
 | |
|         self.name = name
 | |
|         self.a = a
 | |
|         self.b = b
 | |
|         self.tags = frozenset(tags)  # prevent shared tags
 | |
| 
 | |
|     def check(self, do):
 | |
|         """
 | |
|         Run the function `do` on this test case, expanding arguments
 | |
|         """
 | |
|         do(self.a, self.b, tags=self.tags)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'<LinalgCase: {self.name}>'
 | |
| 
 | |
| 
 | |
| def apply_tag(tag, cases):
 | |
|     """
 | |
|     Add the given tag (a string) to each of the cases (a list of LinalgCase
 | |
|     objects)
 | |
|     """
 | |
|     assert tag in all_tags, "Invalid tag"
 | |
|     for case in cases:
 | |
|         case.tags = case.tags | {tag}
 | |
|     return cases
 | |
| 
 | |
| 
 | |
| #
 | |
| # Base test cases
 | |
| #
 | |
| 
 | |
| np.random.seed(1234)
 | |
| 
 | |
| CASES = []
 | |
| 
 | |
| # square test cases
 | |
| CASES += apply_tag('square', [
 | |
|     LinalgCase("single",
 | |
|                array([[1., 2.], [3., 4.]], dtype=single),
 | |
|                array([2., 1.], dtype=single)),
 | |
|     LinalgCase("double",
 | |
|                array([[1., 2.], [3., 4.]], dtype=double),
 | |
|                array([2., 1.], dtype=double)),
 | |
|     LinalgCase("double_2",
 | |
|                array([[1., 2.], [3., 4.]], dtype=double),
 | |
|                array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
 | |
|     LinalgCase("csingle",
 | |
|                array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
 | |
|                array([2. + 1j, 1. + 2j], dtype=csingle)),
 | |
|     LinalgCase("cdouble",
 | |
|                array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
 | |
|                array([2. + 1j, 1. + 2j], dtype=cdouble)),
 | |
|     LinalgCase("cdouble_2",
 | |
|                array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
 | |
|                array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
 | |
|     LinalgCase("0x0",
 | |
|                np.empty((0, 0), dtype=double),
 | |
|                np.empty((0,), dtype=double),
 | |
|                tags={'size-0'}),
 | |
|     LinalgCase("8x8",
 | |
|                np.random.rand(8, 8),
 | |
|                np.random.rand(8)),
 | |
|     LinalgCase("1x1",
 | |
|                np.random.rand(1, 1),
 | |
|                np.random.rand(1)),
 | |
|     LinalgCase("nonarray",
 | |
|                [[1, 2], [3, 4]],
 | |
|                [2, 1]),
 | |
| ])
 | |
| 
 | |
| # non-square test-cases
 | |
| CASES += apply_tag('nonsquare', [
 | |
|     LinalgCase("single_nsq_1",
 | |
|                array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
 | |
|                array([2., 1.], dtype=single)),
 | |
|     LinalgCase("single_nsq_2",
 | |
|                array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
 | |
|                array([2., 1., 3.], dtype=single)),
 | |
|     LinalgCase("double_nsq_1",
 | |
|                array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
 | |
|                array([2., 1.], dtype=double)),
 | |
|     LinalgCase("double_nsq_2",
 | |
|                array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
 | |
|                array([2., 1., 3.], dtype=double)),
 | |
|     LinalgCase("csingle_nsq_1",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
 | |
|                array([2. + 1j, 1. + 2j], dtype=csingle)),
 | |
|     LinalgCase("csingle_nsq_2",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
 | |
|                array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
 | |
|     LinalgCase("cdouble_nsq_1",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
 | |
|                array([2. + 1j, 1. + 2j], dtype=cdouble)),
 | |
|     LinalgCase("cdouble_nsq_2",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
 | |
|                array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
 | |
|     LinalgCase("cdouble_nsq_1_2",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
 | |
|                array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
 | |
|     LinalgCase("cdouble_nsq_2_2",
 | |
|                array(
 | |
|                    [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
 | |
|                array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
 | |
|     LinalgCase("8x11",
 | |
|                np.random.rand(8, 11),
 | |
|                np.random.rand(8)),
 | |
|     LinalgCase("1x5",
 | |
|                np.random.rand(1, 5),
 | |
|                np.random.rand(1)),
 | |
|     LinalgCase("5x1",
 | |
|                np.random.rand(5, 1),
 | |
|                np.random.rand(5)),
 | |
|     LinalgCase("0x4",
 | |
|                np.random.rand(0, 4),
 | |
|                np.random.rand(0),
 | |
|                tags={'size-0'}),
 | |
|     LinalgCase("4x0",
 | |
|                np.random.rand(4, 0),
 | |
|                np.random.rand(4),
 | |
|                tags={'size-0'}),
 | |
| ])
 | |
| 
 | |
| # hermitian test-cases
 | |
| CASES += apply_tag('hermitian', [
 | |
|     LinalgCase("hsingle",
 | |
|                array([[1., 2.], [2., 1.]], dtype=single),
 | |
|                None),
 | |
|     LinalgCase("hdouble",
 | |
|                array([[1., 2.], [2., 1.]], dtype=double),
 | |
|                None),
 | |
|     LinalgCase("hcsingle",
 | |
|                array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
 | |
|                None),
 | |
|     LinalgCase("hcdouble",
 | |
|                array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
 | |
|                None),
 | |
|     LinalgCase("hempty",
 | |
|                np.empty((0, 0), dtype=double),
 | |
|                None,
 | |
|                tags={'size-0'}),
 | |
|     LinalgCase("hnonarray",
 | |
|                [[1, 2], [2, 1]],
 | |
|                None),
 | |
|     LinalgCase("matrix_b_only",
 | |
|                array([[1., 2.], [2., 1.]]),
 | |
|                None),
 | |
|     LinalgCase("hmatrix_1x1",
 | |
|                np.random.rand(1, 1),
 | |
|                None),
 | |
| ])
 | |
| 
 | |
| 
 | |
| #
 | |
| # Gufunc test cases
 | |
| #
 | |
| def _make_generalized_cases():
 | |
|     new_cases = []
 | |
| 
 | |
|     for case in CASES:
 | |
|         if not isinstance(case.a, np.ndarray):
 | |
|             continue
 | |
| 
 | |
|         a = np.array([case.a, 2 * case.a, 3 * case.a])
 | |
|         if case.b is None:
 | |
|             b = None
 | |
|         elif case.b.ndim == 1:
 | |
|             b = case.b
 | |
|         else:
 | |
|             b = np.array([case.b, 7 * case.b, 6 * case.b])
 | |
|         new_case = LinalgCase(case.name + "_tile3", a, b,
 | |
|                               tags=case.tags | {'generalized'})
 | |
|         new_cases.append(new_case)
 | |
| 
 | |
|         a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
 | |
|         if case.b is None:
 | |
|             b = None
 | |
|         elif case.b.ndim == 1:
 | |
|             b = np.array([case.b] * 2 * 3 * a.shape[-1])\
 | |
|                   .reshape((3, 2) + case.a.shape[-2:])
 | |
|         else:
 | |
|             b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
 | |
|         new_case = LinalgCase(case.name + "_tile213", a, b,
 | |
|                               tags=case.tags | {'generalized'})
 | |
|         new_cases.append(new_case)
 | |
| 
 | |
|     return new_cases
 | |
| 
 | |
| 
 | |
| CASES += _make_generalized_cases()
 | |
| 
 | |
| 
 | |
| #
 | |
| # Generate stride combination variations of the above
 | |
| #
 | |
| def _stride_comb_iter(x):
 | |
|     """
 | |
|     Generate cartesian product of strides for all axes
 | |
|     """
 | |
| 
 | |
|     if not isinstance(x, np.ndarray):
 | |
|         yield x, "nop"
 | |
|         return
 | |
| 
 | |
|     stride_set = [(1,)] * x.ndim
 | |
|     stride_set[-1] = (1, 3, -4)
 | |
|     if x.ndim > 1:
 | |
|         stride_set[-2] = (1, 3, -4)
 | |
|     if x.ndim > 2:
 | |
|         stride_set[-3] = (1, -4)
 | |
| 
 | |
|     for repeats in itertools.product(*tuple(stride_set)):
 | |
|         new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
 | |
|         slices = tuple(slice(None, None, repeat) for repeat in repeats)
 | |
| 
 | |
|         # new array with different strides, but same data
 | |
|         xi = np.empty(new_shape, dtype=x.dtype)
 | |
|         xi.view(np.uint32).fill(0xdeadbeef)
 | |
|         xi = xi[slices]
 | |
|         xi[...] = x
 | |
|         xi = xi.view(x.__class__)
 | |
|         assert_(np.all(xi == x))
 | |
|         yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
 | |
| 
 | |
|         # generate also zero strides if possible
 | |
|         if x.ndim >= 1 and x.shape[-1] == 1:
 | |
|             s = list(x.strides)
 | |
|             s[-1] = 0
 | |
|             xi = np.lib.stride_tricks.as_strided(x, strides=s)
 | |
|             yield xi, "stride_xxx_0"
 | |
|         if x.ndim >= 2 and x.shape[-2] == 1:
 | |
|             s = list(x.strides)
 | |
|             s[-2] = 0
 | |
|             xi = np.lib.stride_tricks.as_strided(x, strides=s)
 | |
|             yield xi, "stride_xxx_0_x"
 | |
|         if x.ndim >= 2 and x.shape[:-2] == (1, 1):
 | |
|             s = list(x.strides)
 | |
|             s[-1] = 0
 | |
|             s[-2] = 0
 | |
|             xi = np.lib.stride_tricks.as_strided(x, strides=s)
 | |
|             yield xi, "stride_xxx_0_0"
 | |
| 
 | |
| 
 | |
| def _make_strided_cases():
 | |
|     new_cases = []
 | |
|     for case in CASES:
 | |
|         for a, a_label in _stride_comb_iter(case.a):
 | |
|             for b, b_label in _stride_comb_iter(case.b):
 | |
|                 new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
 | |
|                                       tags=case.tags | {'strided'})
 | |
|                 new_cases.append(new_case)
 | |
|     return new_cases
 | |
| 
 | |
| 
 | |
| CASES += _make_strided_cases()
 | |
| 
 | |
| 
 | |
| #
 | |
| # Test different routines against the above cases
 | |
| #
 | |
| class LinalgTestCase:
 | |
|     TEST_CASES = CASES
 | |
| 
 | |
|     def check_cases(self, require=set(), exclude=set()):
 | |
|         """
 | |
|         Run func on each of the cases with all of the tags in require, and none
 | |
|         of the tags in exclude
 | |
|         """
 | |
|         for case in self.TEST_CASES:
 | |
|             # filter by require and exclude
 | |
|             if case.tags & require != require:
 | |
|                 continue
 | |
|             if case.tags & exclude:
 | |
|                 continue
 | |
| 
 | |
|             try:
 | |
|                 case.check(self.do)
 | |
|             except Exception as e:
 | |
|                 msg = f'In test case: {case!r}\n\n'
 | |
|                 msg += traceback.format_exc()
 | |
|                 raise AssertionError(msg) from e
 | |
| 
 | |
| 
 | |
| class LinalgSquareTestCase(LinalgTestCase):
 | |
| 
 | |
|     def test_sq_cases(self):
 | |
|         self.check_cases(require={'square'},
 | |
|                          exclude={'generalized', 'size-0'})
 | |
| 
 | |
|     def test_empty_sq_cases(self):
 | |
|         self.check_cases(require={'square', 'size-0'},
 | |
|                          exclude={'generalized'})
 | |
| 
 | |
| 
 | |
| class LinalgNonsquareTestCase(LinalgTestCase):
 | |
| 
 | |
|     def test_nonsq_cases(self):
 | |
|         self.check_cases(require={'nonsquare'},
 | |
|                          exclude={'generalized', 'size-0'})
 | |
| 
 | |
|     def test_empty_nonsq_cases(self):
 | |
|         self.check_cases(require={'nonsquare', 'size-0'},
 | |
|                          exclude={'generalized'})
 | |
| 
 | |
| 
 | |
| class HermitianTestCase(LinalgTestCase):
 | |
| 
 | |
|     def test_herm_cases(self):
 | |
|         self.check_cases(require={'hermitian'},
 | |
|                          exclude={'generalized', 'size-0'})
 | |
| 
 | |
|     def test_empty_herm_cases(self):
 | |
|         self.check_cases(require={'hermitian', 'size-0'},
 | |
|                          exclude={'generalized'})
 | |
| 
 | |
| 
 | |
| class LinalgGeneralizedSquareTestCase(LinalgTestCase):
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_sq_cases(self):
 | |
|         self.check_cases(require={'generalized', 'square'},
 | |
|                          exclude={'size-0'})
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_empty_sq_cases(self):
 | |
|         self.check_cases(require={'generalized', 'square', 'size-0'})
 | |
| 
 | |
| 
 | |
| class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_nonsq_cases(self):
 | |
|         self.check_cases(require={'generalized', 'nonsquare'},
 | |
|                          exclude={'size-0'})
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_empty_nonsq_cases(self):
 | |
|         self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
 | |
| 
 | |
| 
 | |
| class HermitianGeneralizedTestCase(LinalgTestCase):
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_herm_cases(self):
 | |
|         self.check_cases(require={'generalized', 'hermitian'},
 | |
|                          exclude={'size-0'})
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     def test_generalized_empty_herm_cases(self):
 | |
|         self.check_cases(require={'generalized', 'hermitian', 'size-0'},
 | |
|                          exclude={'none'})
 | |
| 
 | |
| 
 | |
| def identity_like_generalized(a):
 | |
|     a = asarray(a)
 | |
|     if a.ndim >= 3:
 | |
|         r = np.empty(a.shape, dtype=a.dtype)
 | |
|         r[...] = identity(a.shape[-2])
 | |
|         return r
 | |
|     else:
 | |
|         return identity(a.shape[0])
 | |
| 
 | |
| 
 | |
| class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
|     # kept apart from TestSolve for use for testing with matrices.
 | |
|     def do(self, a, b, tags):
 | |
|         x = linalg.solve(a, b)
 | |
|         if np.array(b).ndim == 1:
 | |
|             # When a is (..., M, M) and b is (M,), it is the same as when b is
 | |
|             # (M, 1), except the result has shape (..., M)
 | |
|             adotx = matmul(a, x[..., None])[..., 0]
 | |
|             assert_almost_equal(np.broadcast_to(b, adotx.shape), adotx)
 | |
|         else:
 | |
|             adotx = matmul(a, x)
 | |
|             assert_almost_equal(b, adotx)
 | |
|         assert_(consistent_subclass(x, b))
 | |
| 
 | |
| 
 | |
| class TestSolve(SolveCases):
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         assert_equal(linalg.solve(x, x).dtype, dtype)
 | |
| 
 | |
|     def test_1_d(self):
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.arange(8).reshape(2, 2, 2)
 | |
|         b = np.arange(2).view(ArraySubclass)
 | |
|         result = linalg.solve(a, b)
 | |
|         assert result.shape == (2, 2)
 | |
| 
 | |
|         # If b is anything other than 1-D it should be treated as a stack of
 | |
|         # matrices
 | |
|         b = np.arange(4).reshape(2, 2).view(ArraySubclass)
 | |
|         result = linalg.solve(a, b)
 | |
|         assert result.shape == (2, 2, 2)
 | |
| 
 | |
|         b = np.arange(2).reshape(1, 2).view(ArraySubclass)
 | |
|         assert_raises(ValueError, linalg.solve, a, b)
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         # Test system of 0x0 matrices
 | |
|         a = np.arange(8).reshape(2, 2, 2)
 | |
|         b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
 | |
| 
 | |
|         expected = linalg.solve(a, b)[:, 0:0, :]
 | |
|         result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
 | |
|         assert_array_equal(result, expected)
 | |
|         assert_(isinstance(result, ArraySubclass))
 | |
| 
 | |
|         # Test errors for non-square and only b's dimension being 0
 | |
|         assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
 | |
|         assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
 | |
| 
 | |
|         # Test broadcasting error
 | |
|         b = np.arange(6).reshape(1, 3, 2)  # broadcasting error
 | |
|         assert_raises(ValueError, linalg.solve, a, b)
 | |
|         assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
 | |
| 
 | |
|         # Test zero "single equations" with 0x0 matrices.
 | |
|         b = np.arange(2).view(ArraySubclass)
 | |
|         expected = linalg.solve(a, b)[:, 0:0]
 | |
|         result = linalg.solve(a[:, 0:0, 0:0], b[0:0])
 | |
|         assert_array_equal(result, expected)
 | |
|         assert_(isinstance(result, ArraySubclass))
 | |
| 
 | |
|         b = np.arange(3).reshape(1, 3)
 | |
|         assert_raises(ValueError, linalg.solve, a, b)
 | |
|         assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
 | |
|         assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
 | |
| 
 | |
|     def test_0_size_k(self):
 | |
|         # test zero multiple equation (K=0) case.
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.arange(4).reshape(1, 2, 2)
 | |
|         b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
 | |
| 
 | |
|         expected = linalg.solve(a, b)[:, :, 0:0]
 | |
|         result = linalg.solve(a, b[:, :, 0:0])
 | |
|         assert_array_equal(result, expected)
 | |
|         assert_(isinstance(result, ArraySubclass))
 | |
| 
 | |
|         # test both zero.
 | |
|         expected = linalg.solve(a, b)[:, 0:0, 0:0]
 | |
|         result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
 | |
|         assert_array_equal(result, expected)
 | |
|         assert_(isinstance(result, ArraySubclass))
 | |
| 
 | |
| 
 | |
| class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         a_inv = linalg.inv(a)
 | |
|         assert_almost_equal(matmul(a, a_inv),
 | |
|                             identity_like_generalized(a))
 | |
|         assert_(consistent_subclass(a_inv, a))
 | |
| 
 | |
| 
 | |
| class TestInv(InvCases):
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         assert_equal(linalg.inv(x).dtype, dtype)
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         # Check that all kinds of 0-sized arrays work
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res = linalg.inv(a)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         assert_equal(a.shape, res.shape)
 | |
|         assert_(isinstance(res, ArraySubclass))
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res = linalg.inv(a)
 | |
|         assert_(res.dtype.type is np.complex64)
 | |
|         assert_equal(a.shape, res.shape)
 | |
|         assert_(isinstance(res, ArraySubclass))
 | |
| 
 | |
| 
 | |
| class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         ev = linalg.eigvals(a)
 | |
|         evalues, evectors = linalg.eig(a)
 | |
|         assert_almost_equal(ev, evalues)
 | |
| 
 | |
| 
 | |
| class TestEigvals(EigvalsCases):
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         assert_equal(linalg.eigvals(x).dtype, dtype)
 | |
|         x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
 | |
|         assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         # Check that all kinds of 0-sized arrays work
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res = linalg.eigvals(a)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         assert_equal((0, 1), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res = linalg.eigvals(a)
 | |
|         assert_(res.dtype.type is np.complex64)
 | |
|         assert_equal((0,), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
| 
 | |
| class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         res = linalg.eig(a)
 | |
|         eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors
 | |
|         assert_allclose(matmul(a, eigenvectors),
 | |
|                         np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :],
 | |
|                         rtol=get_rtol(eigenvalues.dtype))
 | |
|         assert_(consistent_subclass(eigenvectors, a))
 | |
| 
 | |
| 
 | |
| class TestEig(EigCases):
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         w, v = np.linalg.eig(x)
 | |
|         assert_equal(w.dtype, dtype)
 | |
|         assert_equal(v.dtype, dtype)
 | |
| 
 | |
|         x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
 | |
|         w, v = np.linalg.eig(x)
 | |
|         assert_equal(w.dtype, get_complex_dtype(dtype))
 | |
|         assert_equal(v.dtype, get_complex_dtype(dtype))
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         # Check that all kinds of 0-sized arrays work
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res, res_v = linalg.eig(a)
 | |
|         assert_(res_v.dtype.type is np.float64)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         assert_equal(a.shape, res_v.shape)
 | |
|         assert_equal((0, 1), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(a, np.ndarray))
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res, res_v = linalg.eig(a)
 | |
|         assert_(res_v.dtype.type is np.complex64)
 | |
|         assert_(res.dtype.type is np.complex64)
 | |
|         assert_equal(a.shape, res_v.shape)
 | |
|         assert_equal((0,), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(a, np.ndarray))
 | |
| 
 | |
| 
 | |
| class SVDBaseTests:
 | |
|     hermitian = False
 | |
| 
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         res = linalg.svd(x)
 | |
|         U, S, Vh = res.U, res.S, res.Vh
 | |
|         assert_equal(U.dtype, dtype)
 | |
|         assert_equal(S.dtype, get_real_dtype(dtype))
 | |
|         assert_equal(Vh.dtype, dtype)
 | |
|         s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
 | |
|         assert_equal(s.dtype, get_real_dtype(dtype))
 | |
| 
 | |
| 
 | |
| class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         u, s, vt = linalg.svd(a, False)
 | |
|         assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
 | |
|                                            np.asarray(vt)),
 | |
|                         rtol=get_rtol(u.dtype))
 | |
|         assert_(consistent_subclass(u, a))
 | |
|         assert_(consistent_subclass(vt, a))
 | |
| 
 | |
| 
 | |
| class TestSVD(SVDCases, SVDBaseTests):
 | |
|     def test_empty_identity(self):
 | |
|         """ Empty input should put an identity matrix in u or vh """
 | |
|         x = np.empty((4, 0))
 | |
|         u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
 | |
|         assert_equal(u.shape, (4, 4))
 | |
|         assert_equal(vh.shape, (0, 0))
 | |
|         assert_equal(u, np.eye(4))
 | |
| 
 | |
|         x = np.empty((0, 4))
 | |
|         u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
 | |
|         assert_equal(u.shape, (0, 0))
 | |
|         assert_equal(vh.shape, (4, 4))
 | |
|         assert_equal(vh, np.eye(4))
 | |
| 
 | |
|     def test_svdvals(self):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]])
 | |
|         s_from_svd = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
 | |
|         s_from_svdvals = linalg.svdvals(x)
 | |
|         assert_almost_equal(s_from_svd, s_from_svdvals)
 | |
| 
 | |
| 
 | |
| class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         u, s, vt = linalg.svd(a, False, hermitian=True)
 | |
|         assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
 | |
|                                            np.asarray(vt)),
 | |
|                         rtol=get_rtol(u.dtype))
 | |
| 
 | |
|         def hermitian(mat):
 | |
|             axes = list(range(mat.ndim))
 | |
|             axes[-1], axes[-2] = axes[-2], axes[-1]
 | |
|             return np.conj(np.transpose(mat, axes=axes))
 | |
| 
 | |
|         assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
 | |
|         assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
 | |
|         assert_equal(np.sort(s)[..., ::-1], s)
 | |
|         assert_(consistent_subclass(u, a))
 | |
|         assert_(consistent_subclass(vt, a))
 | |
| 
 | |
| 
 | |
| class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
 | |
|     hermitian = True
 | |
| 
 | |
| 
 | |
| class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
|     # cond(x, p) for p in (None, 2, -2)
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         c = asarray(a)  # a might be a matrix
 | |
|         if 'size-0' in tags:
 | |
|             assert_raises(LinAlgError, linalg.cond, c)
 | |
|             return
 | |
| 
 | |
|         # +-2 norms
 | |
|         s = linalg.svd(c, compute_uv=False)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a), s[..., 0] / s[..., -1],
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, 2), s[..., 0] / s[..., -1],
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, -2), s[..., -1] / s[..., 0],
 | |
|             single_decimal=5, double_decimal=11)
 | |
| 
 | |
|         # Other norms
 | |
|         cinv = np.linalg.inv(c)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, 1),
 | |
|             abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, -1),
 | |
|             abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, np.inf),
 | |
|             abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, -np.inf),
 | |
|             abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
 | |
|             single_decimal=5, double_decimal=11)
 | |
|         assert_almost_equal(
 | |
|             linalg.cond(a, 'fro'),
 | |
|             np.sqrt((abs(c)**2).sum(-1).sum(-1)
 | |
|                     * (abs(cinv)**2).sum(-1).sum(-1)),
 | |
|             single_decimal=5, double_decimal=11)
 | |
| 
 | |
| 
 | |
| class TestCond(CondCases):
 | |
|     def test_basic_nonsvd(self):
 | |
|         # Smoketest the non-svd norms
 | |
|         A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
 | |
|         assert_almost_equal(linalg.cond(A, inf), 4)
 | |
|         assert_almost_equal(linalg.cond(A, -inf), 2 / 3)
 | |
|         assert_almost_equal(linalg.cond(A, 1), 4)
 | |
|         assert_almost_equal(linalg.cond(A, -1), 0.5)
 | |
|         assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))
 | |
| 
 | |
|     def test_singular(self):
 | |
|         # Singular matrices have infinite condition number for
 | |
|         # positive norms, and negative norms shouldn't raise
 | |
|         # exceptions
 | |
|         As = [np.zeros((2, 2)), np.ones((2, 2))]
 | |
|         p_pos = [None, 1, 2, 'fro']
 | |
|         p_neg = [-1, -2]
 | |
|         for A, p in itertools.product(As, p_pos):
 | |
|             # Inversion may not hit exact infinity, so just check the
 | |
|             # number is large
 | |
|             assert_(linalg.cond(A, p) > 1e15)
 | |
|         for A, p in itertools.product(As, p_neg):
 | |
|             linalg.cond(A, p)
 | |
| 
 | |
|     @pytest.mark.xfail(True, run=False,
 | |
|                        reason="Platform/LAPACK-dependent failure, "
 | |
|                               "see gh-18914")
 | |
|     def test_nan(self):
 | |
|         # nans should be passed through, not converted to infs
 | |
|         ps = [None, 1, -1, 2, -2, 'fro']
 | |
|         p_pos = [None, 1, 2, 'fro']
 | |
| 
 | |
|         A = np.ones((2, 2))
 | |
|         A[0, 1] = np.nan
 | |
|         for p in ps:
 | |
|             c = linalg.cond(A, p)
 | |
|             assert_(isinstance(c, np.float64))
 | |
|             assert_(np.isnan(c))
 | |
| 
 | |
|         A = np.ones((3, 2, 2))
 | |
|         A[1, 0, 1] = np.nan
 | |
|         for p in ps:
 | |
|             c = linalg.cond(A, p)
 | |
|             assert_(np.isnan(c[1]))
 | |
|             if p in p_pos:
 | |
|                 assert_(c[0] > 1e15)
 | |
|                 assert_(c[2] > 1e15)
 | |
|             else:
 | |
|                 assert_(not np.isnan(c[0]))
 | |
|                 assert_(not np.isnan(c[2]))
 | |
| 
 | |
|     def test_stacked_singular(self):
 | |
|         # Check behavior when only some of the stacked matrices are
 | |
|         # singular
 | |
|         np.random.seed(1234)
 | |
|         A = np.random.rand(2, 2, 2, 2)
 | |
|         A[0, 0] = 0
 | |
|         A[1, 1] = 0
 | |
| 
 | |
|         for p in (None, 1, 2, 'fro', -1, -2):
 | |
|             c = linalg.cond(A, p)
 | |
|             assert_equal(c[0, 0], np.inf)
 | |
|             assert_equal(c[1, 1], np.inf)
 | |
|             assert_(np.isfinite(c[0, 1]))
 | |
|             assert_(np.isfinite(c[1, 0]))
 | |
| 
 | |
| 
 | |
| class PinvCases(LinalgSquareTestCase,
 | |
|                 LinalgNonsquareTestCase,
 | |
|                 LinalgGeneralizedSquareTestCase,
 | |
|                 LinalgGeneralizedNonsquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         a_ginv = linalg.pinv(a)
 | |
|         # `a @ a_ginv == I` does not hold if a is singular
 | |
|         dot = matmul
 | |
|         assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
 | |
|         assert_(consistent_subclass(a_ginv, a))
 | |
| 
 | |
| 
 | |
| class TestPinv(PinvCases):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         a_ginv = linalg.pinv(a, hermitian=True)
 | |
|         # `a @ a_ginv == I` does not hold if a is singular
 | |
|         dot = matmul
 | |
|         assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
 | |
|         assert_(consistent_subclass(a_ginv, a))
 | |
| 
 | |
| 
 | |
| class TestPinvHermitian(PinvHermitianCases):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def test_pinv_rtol_arg():
 | |
|     a = np.array([[1, 2, 3], [4, 1, 1], [2, 3, 1]])
 | |
| 
 | |
|     assert_almost_equal(
 | |
|         np.linalg.pinv(a, rcond=0.5),
 | |
|         np.linalg.pinv(a, rtol=0.5),
 | |
|     )
 | |
| 
 | |
|     with pytest.raises(
 | |
|         ValueError, match=r"`rtol` and `rcond` can't be both set."
 | |
|     ):
 | |
|         np.linalg.pinv(a, rcond=0.5, rtol=0.5)
 | |
| 
 | |
| 
 | |
| class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         d = linalg.det(a)
 | |
|         res = linalg.slogdet(a)
 | |
|         s, ld = res.sign, res.logabsdet
 | |
|         if asarray(a).dtype.type in (single, double):
 | |
|             ad = asarray(a).astype(double)
 | |
|         else:
 | |
|             ad = asarray(a).astype(cdouble)
 | |
|         ev = linalg.eigvals(ad)
 | |
|         assert_almost_equal(d, multiply.reduce(ev, axis=-1))
 | |
|         assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
 | |
| 
 | |
|         s = np.atleast_1d(s)
 | |
|         ld = np.atleast_1d(ld)
 | |
|         m = (s != 0)
 | |
|         assert_almost_equal(np.abs(s[m]), 1)
 | |
|         assert_equal(ld[~m], -inf)
 | |
| 
 | |
| 
 | |
| class TestDet(DetCases):
 | |
|     def test_zero(self):
 | |
|         assert_equal(linalg.det([[0.0]]), 0.0)
 | |
|         assert_equal(type(linalg.det([[0.0]])), double)
 | |
|         assert_equal(linalg.det([[0.0j]]), 0.0)
 | |
|         assert_equal(type(linalg.det([[0.0j]])), cdouble)
 | |
| 
 | |
|         assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
 | |
|         assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
 | |
|         assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
 | |
|         assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
 | |
|         assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
 | |
|         assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
 | |
| 
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         assert_equal(np.linalg.det(x).dtype, dtype)
 | |
|         ph, s = np.linalg.slogdet(x)
 | |
|         assert_equal(s.dtype, get_real_dtype(dtype))
 | |
|         assert_equal(ph.dtype, dtype)
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         a = np.zeros((0, 0), dtype=np.complex64)
 | |
|         res = linalg.det(a)
 | |
|         assert_equal(res, 1.)
 | |
|         assert_(res.dtype.type is np.complex64)
 | |
|         res = linalg.slogdet(a)
 | |
|         assert_equal(res, (1, 0))
 | |
|         assert_(res[0].dtype.type is np.complex64)
 | |
|         assert_(res[1].dtype.type is np.float32)
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.float64)
 | |
|         res = linalg.det(a)
 | |
|         assert_equal(res, 1.)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         res = linalg.slogdet(a)
 | |
|         assert_equal(res, (1, 0))
 | |
|         assert_(res[0].dtype.type is np.float64)
 | |
|         assert_(res[1].dtype.type is np.float64)
 | |
| 
 | |
| 
 | |
| class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         arr = np.asarray(a)
 | |
|         m, n = arr.shape
 | |
|         u, s, vt = linalg.svd(a, False)
 | |
|         x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
 | |
|         if m == 0:
 | |
|             assert_((x == 0).all())
 | |
|         if m <= n:
 | |
|             assert_almost_equal(b, dot(a, x))
 | |
|             assert_equal(rank, m)
 | |
|         else:
 | |
|             assert_equal(rank, n)
 | |
|         assert_almost_equal(sv, sv.__array_wrap__(s))
 | |
|         if rank == n and m > n:
 | |
|             expect_resids = (
 | |
|                 np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
 | |
|             expect_resids = np.asarray(expect_resids)
 | |
|             if np.asarray(b).ndim == 1:
 | |
|                 expect_resids.shape = (1,)
 | |
|                 assert_equal(residuals.shape, expect_resids.shape)
 | |
|         else:
 | |
|             expect_resids = np.array([]).view(type(x))
 | |
|         assert_almost_equal(residuals, expect_resids)
 | |
|         assert_(np.issubdtype(residuals.dtype, np.floating))
 | |
|         assert_(consistent_subclass(x, b))
 | |
|         assert_(consistent_subclass(residuals, b))
 | |
| 
 | |
| 
 | |
| class TestLstsq(LstsqCases):
 | |
|     def test_rcond(self):
 | |
|         a = np.array([[0., 1.,  0.,  1.,  2.,  0.],
 | |
|                       [0., 2.,  0.,  0.,  1.,  0.],
 | |
|                       [1., 0.,  1.,  0.,  0.,  4.],
 | |
|                       [0., 0.,  0.,  2.,  3.,  0.]]).T
 | |
| 
 | |
|         b = np.array([1, 0, 0, 0, 0, 0])
 | |
| 
 | |
|         x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
 | |
|         assert_(rank == 4)
 | |
|         x, residuals, rank, s = linalg.lstsq(a, b)
 | |
|         assert_(rank == 3)
 | |
|         x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
 | |
|         assert_(rank == 3)
 | |
| 
 | |
|     @pytest.mark.parametrize(["m", "n", "n_rhs"], [
 | |
|         (4, 2, 2),
 | |
|         (0, 4, 1),
 | |
|         (0, 4, 2),
 | |
|         (4, 0, 1),
 | |
|         (4, 0, 2),
 | |
|         (4, 2, 0),
 | |
|         (0, 0, 0)
 | |
|     ])
 | |
|     def test_empty_a_b(self, m, n, n_rhs):
 | |
|         a = np.arange(m * n).reshape(m, n)
 | |
|         b = np.ones((m, n_rhs))
 | |
|         x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
 | |
|         if m == 0:
 | |
|             assert_((x == 0).all())
 | |
|         assert_equal(x.shape, (n, n_rhs))
 | |
|         assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
 | |
|         if m > n and n_rhs > 0:
 | |
|             # residuals are exactly the squared norms of b's columns
 | |
|             r = b - np.dot(a, x)
 | |
|             assert_almost_equal(residuals, (r * r).sum(axis=-2))
 | |
|         assert_equal(rank, min(m, n))
 | |
|         assert_equal(s.shape, (min(m, n),))
 | |
| 
 | |
|     def test_incompatible_dims(self):
 | |
|         # use modified version of docstring example
 | |
|         x = np.array([0, 1, 2, 3])
 | |
|         y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
 | |
|         A = np.vstack([x, np.ones(len(x))]).T
 | |
|         with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
 | |
|             linalg.lstsq(A, y, rcond=None)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
 | |
| class TestMatrixPower:
 | |
| 
 | |
|     rshft_0 = np.eye(4)
 | |
|     rshft_1 = rshft_0[[3, 0, 1, 2]]
 | |
|     rshft_2 = rshft_0[[2, 3, 0, 1]]
 | |
|     rshft_3 = rshft_0[[1, 2, 3, 0]]
 | |
|     rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
 | |
|     noninv = array([[1, 0], [0, 0]])
 | |
|     stacked = np.block([[[rshft_0]]] * 2)
 | |
|     # FIXME the 'e' dtype might work in future
 | |
|     dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]
 | |
| 
 | |
|     def test_large_power(self, dt):
 | |
|         rshft = self.rshft_1.astype(dt)
 | |
|         assert_equal(
 | |
|             matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
 | |
|         assert_equal(
 | |
|             matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
 | |
|         assert_equal(
 | |
|             matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
 | |
|         assert_equal(
 | |
|             matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
 | |
| 
 | |
|     def test_power_is_zero(self, dt):
 | |
|         def tz(M):
 | |
|             mz = matrix_power(M, 0)
 | |
|             assert_equal(mz, identity_like_generalized(M))
 | |
|             assert_equal(mz.dtype, M.dtype)
 | |
| 
 | |
|         for mat in self.rshft_all:
 | |
|             tz(mat.astype(dt))
 | |
|             if dt != object:
 | |
|                 tz(self.stacked.astype(dt))
 | |
| 
 | |
|     def test_power_is_one(self, dt):
 | |
|         def tz(mat):
 | |
|             mz = matrix_power(mat, 1)
 | |
|             assert_equal(mz, mat)
 | |
|             assert_equal(mz.dtype, mat.dtype)
 | |
| 
 | |
|         for mat in self.rshft_all:
 | |
|             tz(mat.astype(dt))
 | |
|             if dt != object:
 | |
|                 tz(self.stacked.astype(dt))
 | |
| 
 | |
|     def test_power_is_two(self, dt):
 | |
|         def tz(mat):
 | |
|             mz = matrix_power(mat, 2)
 | |
|             mmul = matmul if mat.dtype != object else dot
 | |
|             assert_equal(mz, mmul(mat, mat))
 | |
|             assert_equal(mz.dtype, mat.dtype)
 | |
| 
 | |
|         for mat in self.rshft_all:
 | |
|             tz(mat.astype(dt))
 | |
|             if dt != object:
 | |
|                 tz(self.stacked.astype(dt))
 | |
| 
 | |
|     def test_power_is_minus_one(self, dt):
 | |
|         def tz(mat):
 | |
|             invmat = matrix_power(mat, -1)
 | |
|             mmul = matmul if mat.dtype != object else dot
 | |
|             assert_almost_equal(
 | |
|                 mmul(invmat, mat), identity_like_generalized(mat))
 | |
| 
 | |
|         for mat in self.rshft_all:
 | |
|             if dt not in self.dtnoinv:
 | |
|                 tz(mat.astype(dt))
 | |
| 
 | |
|     def test_exceptions_bad_power(self, dt):
 | |
|         mat = self.rshft_0.astype(dt)
 | |
|         assert_raises(TypeError, matrix_power, mat, 1.5)
 | |
|         assert_raises(TypeError, matrix_power, mat, [1])
 | |
| 
 | |
|     def test_exceptions_non_square(self, dt):
 | |
|         assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
 | |
|         assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
 | |
|         assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
 | |
| 
 | |
|     @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
 | |
|     def test_exceptions_not_invertible(self, dt):
 | |
|         if dt in self.dtnoinv:
 | |
|             return
 | |
|         mat = self.noninv.astype(dt)
 | |
|         assert_raises(LinAlgError, matrix_power, mat, -1)
 | |
| 
 | |
| 
 | |
| class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         # note that eigenvalue arrays returned by eig must be sorted since
 | |
|         # their order isn't guaranteed.
 | |
|         ev = linalg.eigvalsh(a, 'L')
 | |
|         evalues, evectors = linalg.eig(a)
 | |
|         evalues.sort(axis=-1)
 | |
|         assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
 | |
| 
 | |
|         ev2 = linalg.eigvalsh(a, 'U')
 | |
|         assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
 | |
| 
 | |
| 
 | |
| class TestEigvalsh:
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         w = np.linalg.eigvalsh(x)
 | |
|         assert_equal(w.dtype, get_real_dtype(dtype))
 | |
| 
 | |
|     def test_invalid(self):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
 | |
|         assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
 | |
|         assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
 | |
|         assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
 | |
| 
 | |
|     def test_UPLO(self):
 | |
|         Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
 | |
|         Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
 | |
|         tgt = np.array([-1, 1], dtype=np.double)
 | |
|         rtol = get_rtol(np.double)
 | |
| 
 | |
|         # Check default is 'L'
 | |
|         w = np.linalg.eigvalsh(Klo)
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'L'
 | |
|         w = np.linalg.eigvalsh(Klo, UPLO='L')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'l'
 | |
|         w = np.linalg.eigvalsh(Klo, UPLO='l')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'U'
 | |
|         w = np.linalg.eigvalsh(Kup, UPLO='U')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'u'
 | |
|         w = np.linalg.eigvalsh(Kup, UPLO='u')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         # Check that all kinds of 0-sized arrays work
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res = linalg.eigvalsh(a)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         assert_equal((0, 1), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res = linalg.eigvalsh(a)
 | |
|         assert_(res.dtype.type is np.float32)
 | |
|         assert_equal((0,), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
| 
 | |
| class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
 | |
| 
 | |
|     def do(self, a, b, tags):
 | |
|         # note that eigenvalue arrays returned by eig must be sorted since
 | |
|         # their order isn't guaranteed.
 | |
|         res = linalg.eigh(a)
 | |
|         ev, evc = res.eigenvalues, res.eigenvectors
 | |
|         evalues, evectors = linalg.eig(a)
 | |
|         evalues.sort(axis=-1)
 | |
|         assert_almost_equal(ev, evalues)
 | |
| 
 | |
|         assert_allclose(matmul(a, evc),
 | |
|                         np.asarray(ev)[..., None, :] * np.asarray(evc),
 | |
|                         rtol=get_rtol(ev.dtype))
 | |
| 
 | |
|         ev2, evc2 = linalg.eigh(a, 'U')
 | |
|         assert_almost_equal(ev2, evalues)
 | |
| 
 | |
|         assert_allclose(matmul(a, evc2),
 | |
|                         np.asarray(ev2)[..., None, :] * np.asarray(evc2),
 | |
|                         rtol=get_rtol(ev.dtype), err_msg=repr(a))
 | |
| 
 | |
| 
 | |
| class TestEigh:
 | |
|     @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
 | |
|     def test_types(self, dtype):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
 | |
|         w, v = np.linalg.eigh(x)
 | |
|         assert_equal(w.dtype, get_real_dtype(dtype))
 | |
|         assert_equal(v.dtype, dtype)
 | |
| 
 | |
|     def test_invalid(self):
 | |
|         x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
 | |
|         assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
 | |
|         assert_raises(ValueError, np.linalg.eigh, x, "lower")
 | |
|         assert_raises(ValueError, np.linalg.eigh, x, "upper")
 | |
| 
 | |
|     def test_UPLO(self):
 | |
|         Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
 | |
|         Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
 | |
|         tgt = np.array([-1, 1], dtype=np.double)
 | |
|         rtol = get_rtol(np.double)
 | |
| 
 | |
|         # Check default is 'L'
 | |
|         w, v = np.linalg.eigh(Klo)
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'L'
 | |
|         w, v = np.linalg.eigh(Klo, UPLO='L')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'l'
 | |
|         w, v = np.linalg.eigh(Klo, UPLO='l')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'U'
 | |
|         w, v = np.linalg.eigh(Kup, UPLO='U')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
|         # Check 'u'
 | |
|         w, v = np.linalg.eigh(Kup, UPLO='u')
 | |
|         assert_allclose(w, tgt, rtol=rtol)
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         # Check that all kinds of 0-sized arrays work
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res, res_v = linalg.eigh(a)
 | |
|         assert_(res_v.dtype.type is np.float64)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         assert_equal(a.shape, res_v.shape)
 | |
|         assert_equal((0, 1), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(a, np.ndarray))
 | |
| 
 | |
|         a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res, res_v = linalg.eigh(a)
 | |
|         assert_(res_v.dtype.type is np.complex64)
 | |
|         assert_(res.dtype.type is np.float32)
 | |
|         assert_equal(a.shape, res_v.shape)
 | |
|         assert_equal((0,), res.shape)
 | |
|         # This is just for documentation, it might make sense to change:
 | |
|         assert_(isinstance(a, np.ndarray))
 | |
| 
 | |
| 
 | |
| class _TestNormBase:
 | |
|     dt = None
 | |
|     dec = None
 | |
| 
 | |
|     @staticmethod
 | |
|     def check_dtype(x, res):
 | |
|         if issubclass(x.dtype.type, np.inexact):
 | |
|             assert_equal(res.dtype, x.real.dtype)
 | |
|         else:
 | |
|             # For integer input, don't have to test float precision of output.
 | |
|             assert_(issubclass(res.dtype.type, np.floating))
 | |
| 
 | |
| 
 | |
| class _TestNormGeneral(_TestNormBase):
 | |
| 
 | |
|     def test_empty(self):
 | |
|         assert_equal(norm([]), 0.0)
 | |
|         assert_equal(norm(array([], dtype=self.dt)), 0.0)
 | |
|         assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
 | |
| 
 | |
|     def test_vector_return_type(self):
 | |
|         a = np.array([1, 0, 1])
 | |
| 
 | |
|         exact_types = np.typecodes['AllInteger']
 | |
|         inexact_types = np.typecodes['AllFloat']
 | |
| 
 | |
|         all_types = exact_types + inexact_types
 | |
| 
 | |
|         for each_type in all_types:
 | |
|             at = a.astype(each_type)
 | |
| 
 | |
|             an = norm(at, -np.inf)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 0.0)
 | |
| 
 | |
|             with suppress_warnings() as sup:
 | |
|                 sup.filter(RuntimeWarning, "divide by zero encountered")
 | |
|                 an = norm(at, -1)
 | |
|                 self.check_dtype(at, an)
 | |
|                 assert_almost_equal(an, 0.0)
 | |
| 
 | |
|             an = norm(at, 0)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2)
 | |
| 
 | |
|             an = norm(at, 1)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2.0)
 | |
| 
 | |
|             an = norm(at, 2)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 2.0))
 | |
| 
 | |
|             an = norm(at, 4)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 4.0))
 | |
| 
 | |
|             an = norm(at, np.inf)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 1.0)
 | |
| 
 | |
|     def test_vector(self):
 | |
|         a = [1, 2, 3, 4]
 | |
|         b = [-1, -2, -3, -4]
 | |
|         c = [-1, 2, -3, 4]
 | |
| 
 | |
|         def _test(v):
 | |
|             np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, inf), 4.0,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, -inf), 1.0,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, 1), 10.0,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
 | |
|                                            decimal=self.dec)
 | |
|             np.testing.assert_almost_equal(norm(v, 0), 4,
 | |
|                                            decimal=self.dec)
 | |
| 
 | |
|         for v in (a, b, c,):
 | |
|             _test(v)
 | |
| 
 | |
|         for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
 | |
|                   array(c, dtype=self.dt)):
 | |
|             _test(v)
 | |
| 
 | |
|     def test_axis(self):
 | |
|         # Vector norms.
 | |
|         # Compare the use of `axis` with computing the norm of each row
 | |
|         # or column separately.
 | |
|         A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
 | |
|         for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
 | |
|             expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
 | |
|             assert_almost_equal(norm(A, ord=order, axis=0), expected0)
 | |
|             expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
 | |
|             assert_almost_equal(norm(A, ord=order, axis=1), expected1)
 | |
| 
 | |
|         # Matrix norms.
 | |
|         B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
 | |
|         nd = B.ndim
 | |
|         for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro']:
 | |
|             for axis in itertools.combinations(range(-nd, nd), 2):
 | |
|                 row_axis, col_axis = axis
 | |
|                 if row_axis < 0:
 | |
|                     row_axis += nd
 | |
|                 if col_axis < 0:
 | |
|                     col_axis += nd
 | |
|                 if row_axis == col_axis:
 | |
|                     assert_raises(ValueError, norm, B, ord=order, axis=axis)
 | |
|                 else:
 | |
|                     n = norm(B, ord=order, axis=axis)
 | |
| 
 | |
|                     # The logic using k_index only works for nd = 3.
 | |
|                     # This has to be changed if nd is increased.
 | |
|                     k_index = nd - (row_axis + col_axis)
 | |
|                     if row_axis < col_axis:
 | |
|                         expected = [norm(B[:].take(k, axis=k_index), ord=order)
 | |
|                                     for k in range(B.shape[k_index])]
 | |
|                     else:
 | |
|                         expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
 | |
|                                     for k in range(B.shape[k_index])]
 | |
|                     assert_almost_equal(n, expected)
 | |
| 
 | |
|     def test_keepdims(self):
 | |
|         A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
 | |
| 
 | |
|         allclose_err = 'order {0}, axis = {1}'
 | |
|         shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
 | |
| 
 | |
|         # check the order=None, axis=None case
 | |
|         expected = norm(A, ord=None, axis=None)
 | |
|         found = norm(A, ord=None, axis=None, keepdims=True)
 | |
|         assert_allclose(np.squeeze(found), expected,
 | |
|                         err_msg=allclose_err.format(None, None))
 | |
|         expected_shape = (1, 1, 1)
 | |
|         assert_(found.shape == expected_shape,
 | |
|                 shape_err.format(found.shape, expected_shape, None, None))
 | |
| 
 | |
|         # Vector norms.
 | |
|         for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
 | |
|             for k in range(A.ndim):
 | |
|                 expected = norm(A, ord=order, axis=k)
 | |
|                 found = norm(A, ord=order, axis=k, keepdims=True)
 | |
|                 assert_allclose(np.squeeze(found), expected,
 | |
|                                 err_msg=allclose_err.format(order, k))
 | |
|                 expected_shape = list(A.shape)
 | |
|                 expected_shape[k] = 1
 | |
|                 expected_shape = tuple(expected_shape)
 | |
|                 assert_(found.shape == expected_shape,
 | |
|                         shape_err.format(found.shape, expected_shape, order, k))
 | |
| 
 | |
|         # Matrix norms.
 | |
|         for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro', 'nuc']:
 | |
|             for k in itertools.permutations(range(A.ndim), 2):
 | |
|                 expected = norm(A, ord=order, axis=k)
 | |
|                 found = norm(A, ord=order, axis=k, keepdims=True)
 | |
|                 assert_allclose(np.squeeze(found), expected,
 | |
|                                 err_msg=allclose_err.format(order, k))
 | |
|                 expected_shape = list(A.shape)
 | |
|                 expected_shape[k[0]] = 1
 | |
|                 expected_shape[k[1]] = 1
 | |
|                 expected_shape = tuple(expected_shape)
 | |
|                 assert_(found.shape == expected_shape,
 | |
|                         shape_err.format(found.shape, expected_shape, order, k))
 | |
| 
 | |
| 
 | |
| class _TestNorm2D(_TestNormBase):
 | |
|     # Define the part for 2d arrays separately, so we can subclass this
 | |
|     # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
 | |
|     array = np.array
 | |
| 
 | |
|     def test_matrix_empty(self):
 | |
|         assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)
 | |
| 
 | |
|     def test_matrix_return_type(self):
 | |
|         a = self.array([[1, 0, 1], [0, 1, 1]])
 | |
| 
 | |
|         exact_types = np.typecodes['AllInteger']
 | |
| 
 | |
|         # float32, complex64, float64, complex128 types are the only types
 | |
|         # allowed by `linalg`, which performs the matrix operations used
 | |
|         # within `norm`.
 | |
|         inexact_types = 'fdFD'
 | |
| 
 | |
|         all_types = exact_types + inexact_types
 | |
| 
 | |
|         for each_type in all_types:
 | |
|             at = a.astype(each_type)
 | |
| 
 | |
|             an = norm(at, -np.inf)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2.0)
 | |
| 
 | |
|             with suppress_warnings() as sup:
 | |
|                 sup.filter(RuntimeWarning, "divide by zero encountered")
 | |
|                 an = norm(at, -1)
 | |
|                 self.check_dtype(at, an)
 | |
|                 assert_almost_equal(an, 1.0)
 | |
| 
 | |
|             an = norm(at, 1)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2.0)
 | |
| 
 | |
|             an = norm(at, 2)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 3.0**(1.0 / 2.0))
 | |
| 
 | |
|             an = norm(at, -2)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 1.0)
 | |
| 
 | |
|             an = norm(at, np.inf)
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2.0)
 | |
| 
 | |
|             an = norm(at, 'fro')
 | |
|             self.check_dtype(at, an)
 | |
|             assert_almost_equal(an, 2.0)
 | |
| 
 | |
|             an = norm(at, 'nuc')
 | |
|             self.check_dtype(at, an)
 | |
|             # Lower bar needed to support low precision floats.
 | |
|             # They end up being off by 1 in the 7th place.
 | |
|             np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
 | |
| 
 | |
|     def test_matrix_2x2(self):
 | |
|         A = self.array([[1, 3], [5, 7]], dtype=self.dt)
 | |
|         assert_almost_equal(norm(A), 84 ** 0.5)
 | |
|         assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
 | |
|         assert_almost_equal(norm(A, 'nuc'), 10.0)
 | |
|         assert_almost_equal(norm(A, inf), 12.0)
 | |
|         assert_almost_equal(norm(A, -inf), 4.0)
 | |
|         assert_almost_equal(norm(A, 1), 10.0)
 | |
|         assert_almost_equal(norm(A, -1), 6.0)
 | |
|         assert_almost_equal(norm(A, 2), 9.1231056256176615)
 | |
|         assert_almost_equal(norm(A, -2), 0.87689437438234041)
 | |
| 
 | |
|         assert_raises(ValueError, norm, A, 'nofro')
 | |
|         assert_raises(ValueError, norm, A, -3)
 | |
|         assert_raises(ValueError, norm, A, 0)
 | |
| 
 | |
|     def test_matrix_3x3(self):
 | |
|         # This test has been added because the 2x2 example
 | |
|         # happened to have equal nuclear norm and induced 1-norm.
 | |
|         # The 1/10 scaling factor accommodates the absolute tolerance
 | |
|         # used in assert_almost_equal.
 | |
|         A = (1 / 10) * \
 | |
|             self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
 | |
|         assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
 | |
|         assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
 | |
|         assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
 | |
|         assert_almost_equal(norm(A, inf), 1.1)
 | |
|         assert_almost_equal(norm(A, -inf), 0.6)
 | |
|         assert_almost_equal(norm(A, 1), 1.0)
 | |
|         assert_almost_equal(norm(A, -1), 0.4)
 | |
|         assert_almost_equal(norm(A, 2), 0.88722940323461277)
 | |
|         assert_almost_equal(norm(A, -2), 0.19456584790481812)
 | |
| 
 | |
|     def test_bad_args(self):
 | |
|         # Check that bad arguments raise the appropriate exceptions.
 | |
| 
 | |
|         A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
 | |
|         B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
 | |
| 
 | |
|         # Using `axis=<integer>` or passing in a 1-D array implies vector
 | |
|         # norms are being computed, so also using `ord='fro'`
 | |
|         # or `ord='nuc'` or any other string raises a ValueError.
 | |
|         assert_raises(ValueError, norm, A, 'fro', 0)
 | |
|         assert_raises(ValueError, norm, A, 'nuc', 0)
 | |
|         assert_raises(ValueError, norm, [3, 4], 'fro', None)
 | |
|         assert_raises(ValueError, norm, [3, 4], 'nuc', None)
 | |
|         assert_raises(ValueError, norm, [3, 4], 'test', None)
 | |
| 
 | |
|         # Similarly, norm should raise an exception when ord is any finite
 | |
|         # number other than 1, 2, -1 or -2 when computing matrix norms.
 | |
|         for order in [0, 3]:
 | |
|             assert_raises(ValueError, norm, A, order, None)
 | |
|             assert_raises(ValueError, norm, A, order, (0, 1))
 | |
|             assert_raises(ValueError, norm, B, order, (1, 2))
 | |
| 
 | |
|         # Invalid axis
 | |
|         assert_raises(AxisError, norm, B, None, 3)
 | |
|         assert_raises(AxisError, norm, B, None, (2, 3))
 | |
|         assert_raises(ValueError, norm, B, None, (0, 1, 2))
 | |
| 
 | |
| 
 | |
| class _TestNorm(_TestNorm2D, _TestNormGeneral):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class TestNorm_NonSystematic:
 | |
| 
 | |
|     def test_longdouble_norm(self):
 | |
|         # Non-regression test: p-norm of longdouble would previously raise
 | |
|         # UnboundLocalError.
 | |
|         x = np.arange(10, dtype=np.longdouble)
 | |
|         old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
 | |
| 
 | |
|     def test_intmin(self):
 | |
|         # Non-regression test: p-norm of signed integer would previously do
 | |
|         # float cast and abs in the wrong order.
 | |
|         x = np.array([-2 ** 31], dtype=np.int32)
 | |
|         old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
 | |
| 
 | |
|     def test_complex_high_ord(self):
 | |
|         # gh-4156
 | |
|         d = np.empty((2,), dtype=np.clongdouble)
 | |
|         d[0] = 6 + 7j
 | |
|         d[1] = -6 + 7j
 | |
|         res = 11.615898132184
 | |
|         old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
 | |
|         d = d.astype(np.complex128)
 | |
|         old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
 | |
|         d = d.astype(np.complex64)
 | |
|         old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
 | |
| 
 | |
| 
 | |
| # Separate definitions so we can use them for matrix tests.
 | |
| class _TestNormDoubleBase(_TestNormBase):
 | |
|     dt = np.double
 | |
|     dec = 12
 | |
| 
 | |
| 
 | |
| class _TestNormSingleBase(_TestNormBase):
 | |
|     dt = np.float32
 | |
|     dec = 6
 | |
| 
 | |
| 
 | |
| class _TestNormInt64Base(_TestNormBase):
 | |
|     dt = np.int64
 | |
|     dec = 12
 | |
| 
 | |
| 
 | |
| class TestNormDouble(_TestNorm, _TestNormDoubleBase):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class TestNormSingle(_TestNorm, _TestNormSingleBase):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class TestNormInt64(_TestNorm, _TestNormInt64Base):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class TestMatrixRank:
 | |
| 
 | |
|     def test_matrix_rank(self):
 | |
|         # Full rank matrix
 | |
|         assert_equal(4, matrix_rank(np.eye(4)))
 | |
|         # rank deficient matrix
 | |
|         I = np.eye(4)
 | |
|         I[-1, -1] = 0.
 | |
|         assert_equal(matrix_rank(I), 3)
 | |
|         # All zeros - zero rank
 | |
|         assert_equal(matrix_rank(np.zeros((4, 4))), 0)
 | |
|         # 1 dimension - rank 1 unless all 0
 | |
|         assert_equal(matrix_rank([1, 0, 0, 0]), 1)
 | |
|         assert_equal(matrix_rank(np.zeros((4,))), 0)
 | |
|         # accepts array-like
 | |
|         assert_equal(matrix_rank([1]), 1)
 | |
|         # greater than 2 dimensions treated as stacked matrices
 | |
|         ms = np.array([I, np.eye(4), np.zeros((4, 4))])
 | |
|         assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
 | |
|         # works on scalar
 | |
|         assert_equal(matrix_rank(1), 1)
 | |
| 
 | |
|         with assert_raises_regex(
 | |
|             ValueError, "`tol` and `rtol` can\'t be both set."
 | |
|         ):
 | |
|             matrix_rank(I, tol=0.01, rtol=0.01)
 | |
| 
 | |
|     def test_symmetric_rank(self):
 | |
|         assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
 | |
|         assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
 | |
|         assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
 | |
|         # rank deficient matrix
 | |
|         I = np.eye(4)
 | |
|         I[-1, -1] = 0.
 | |
|         assert_equal(3, matrix_rank(I, hermitian=True))
 | |
|         # manually supplied tolerance
 | |
|         I[-1, -1] = 1e-8
 | |
|         assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
 | |
|         assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
 | |
| 
 | |
| 
 | |
| def test_reduced_rank():
 | |
|     # Test matrices with reduced rank
 | |
|     rng = np.random.RandomState(20120714)
 | |
|     for i in range(100):
 | |
|         # Make a rank deficient matrix
 | |
|         X = rng.normal(size=(40, 10))
 | |
|         X[:, 0] = X[:, 1] + X[:, 2]
 | |
|         # Assert that matrix_rank detected deficiency
 | |
|         assert_equal(matrix_rank(X), 9)
 | |
|         X[:, 3] = X[:, 4] + X[:, 5]
 | |
|         assert_equal(matrix_rank(X), 8)
 | |
| 
 | |
| 
 | |
| class TestQR:
 | |
|     # Define the array class here, so run this on matrices elsewhere.
 | |
|     array = np.array
 | |
| 
 | |
|     def check_qr(self, a):
 | |
|         # This test expects the argument `a` to be an ndarray or
 | |
|         # a subclass of an ndarray of inexact type.
 | |
|         a_type = type(a)
 | |
|         a_dtype = a.dtype
 | |
|         m, n = a.shape
 | |
|         k = min(m, n)
 | |
| 
 | |
|         # mode == 'complete'
 | |
|         res = linalg.qr(a, mode='complete')
 | |
|         Q, R = res.Q, res.R
 | |
|         assert_(Q.dtype == a_dtype)
 | |
|         assert_(R.dtype == a_dtype)
 | |
|         assert_(isinstance(Q, a_type))
 | |
|         assert_(isinstance(R, a_type))
 | |
|         assert_(Q.shape == (m, m))
 | |
|         assert_(R.shape == (m, n))
 | |
|         assert_almost_equal(dot(Q, R), a)
 | |
|         assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m))
 | |
|         assert_almost_equal(np.triu(R), R)
 | |
| 
 | |
|         # mode == 'reduced'
 | |
|         q1, r1 = linalg.qr(a, mode='reduced')
 | |
|         assert_(q1.dtype == a_dtype)
 | |
|         assert_(r1.dtype == a_dtype)
 | |
|         assert_(isinstance(q1, a_type))
 | |
|         assert_(isinstance(r1, a_type))
 | |
|         assert_(q1.shape == (m, k))
 | |
|         assert_(r1.shape == (k, n))
 | |
|         assert_almost_equal(dot(q1, r1), a)
 | |
|         assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
 | |
|         assert_almost_equal(np.triu(r1), r1)
 | |
| 
 | |
|         # mode == 'r'
 | |
|         r2 = linalg.qr(a, mode='r')
 | |
|         assert_(r2.dtype == a_dtype)
 | |
|         assert_(isinstance(r2, a_type))
 | |
|         assert_almost_equal(r2, r1)
 | |
| 
 | |
|     @pytest.mark.parametrize(["m", "n"], [
 | |
|         (3, 0),
 | |
|         (0, 3),
 | |
|         (0, 0)
 | |
|     ])
 | |
|     def test_qr_empty(self, m, n):
 | |
|         k = min(m, n)
 | |
|         a = np.empty((m, n))
 | |
| 
 | |
|         self.check_qr(a)
 | |
| 
 | |
|         h, tau = np.linalg.qr(a, mode='raw')
 | |
|         assert_equal(h.dtype, np.double)
 | |
|         assert_equal(tau.dtype, np.double)
 | |
|         assert_equal(h.shape, (n, m))
 | |
|         assert_equal(tau.shape, (k,))
 | |
| 
 | |
|     def test_mode_raw(self):
 | |
|         # The factorization is not unique and varies between libraries,
 | |
|         # so it is not possible to check against known values. Functional
 | |
|         # testing is a possibility, but awaits the exposure of more
 | |
|         # of the functions in lapack_lite. Consequently, this test is
 | |
|         # very limited in scope. Note that the results are in FORTRAN
 | |
|         # order, hence the h arrays are transposed.
 | |
|         a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
 | |
| 
 | |
|         # Test double
 | |
|         h, tau = linalg.qr(a, mode='raw')
 | |
|         assert_(h.dtype == np.double)
 | |
|         assert_(tau.dtype == np.double)
 | |
|         assert_(h.shape == (2, 3))
 | |
|         assert_(tau.shape == (2,))
 | |
| 
 | |
|         h, tau = linalg.qr(a.T, mode='raw')
 | |
|         assert_(h.dtype == np.double)
 | |
|         assert_(tau.dtype == np.double)
 | |
|         assert_(h.shape == (3, 2))
 | |
|         assert_(tau.shape == (2,))
 | |
| 
 | |
|     def test_mode_all_but_economic(self):
 | |
|         a = self.array([[1, 2], [3, 4]])
 | |
|         b = self.array([[1, 2], [3, 4], [5, 6]])
 | |
|         for dt in "fd":
 | |
|             m1 = a.astype(dt)
 | |
|             m2 = b.astype(dt)
 | |
|             self.check_qr(m1)
 | |
|             self.check_qr(m2)
 | |
|             self.check_qr(m2.T)
 | |
| 
 | |
|         for dt in "fd":
 | |
|             m1 = 1 + 1j * a.astype(dt)
 | |
|             m2 = 1 + 1j * b.astype(dt)
 | |
|             self.check_qr(m1)
 | |
|             self.check_qr(m2)
 | |
|             self.check_qr(m2.T)
 | |
| 
 | |
|     def check_qr_stacked(self, a):
 | |
|         # This test expects the argument `a` to be an ndarray or
 | |
|         # a subclass of an ndarray of inexact type.
 | |
|         a_type = type(a)
 | |
|         a_dtype = a.dtype
 | |
|         m, n = a.shape[-2:]
 | |
|         k = min(m, n)
 | |
| 
 | |
|         # mode == 'complete'
 | |
|         q, r = linalg.qr(a, mode='complete')
 | |
|         assert_(q.dtype == a_dtype)
 | |
|         assert_(r.dtype == a_dtype)
 | |
|         assert_(isinstance(q, a_type))
 | |
|         assert_(isinstance(r, a_type))
 | |
|         assert_(q.shape[-2:] == (m, m))
 | |
|         assert_(r.shape[-2:] == (m, n))
 | |
|         assert_almost_equal(matmul(q, r), a)
 | |
|         I_mat = np.identity(q.shape[-1])
 | |
|         stack_I_mat = np.broadcast_to(I_mat,
 | |
|                         q.shape[:-2] + (q.shape[-1],) * 2)
 | |
|         assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
 | |
|         assert_almost_equal(np.triu(r[..., :, :]), r)
 | |
| 
 | |
|         # mode == 'reduced'
 | |
|         q1, r1 = linalg.qr(a, mode='reduced')
 | |
|         assert_(q1.dtype == a_dtype)
 | |
|         assert_(r1.dtype == a_dtype)
 | |
|         assert_(isinstance(q1, a_type))
 | |
|         assert_(isinstance(r1, a_type))
 | |
|         assert_(q1.shape[-2:] == (m, k))
 | |
|         assert_(r1.shape[-2:] == (k, n))
 | |
|         assert_almost_equal(matmul(q1, r1), a)
 | |
|         I_mat = np.identity(q1.shape[-1])
 | |
|         stack_I_mat = np.broadcast_to(I_mat,
 | |
|                         q1.shape[:-2] + (q1.shape[-1],) * 2)
 | |
|         assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1),
 | |
|                             stack_I_mat)
 | |
|         assert_almost_equal(np.triu(r1[..., :, :]), r1)
 | |
| 
 | |
|         # mode == 'r'
 | |
|         r2 = linalg.qr(a, mode='r')
 | |
|         assert_(r2.dtype == a_dtype)
 | |
|         assert_(isinstance(r2, a_type))
 | |
|         assert_almost_equal(r2, r1)
 | |
| 
 | |
|     @pytest.mark.parametrize("size", [
 | |
|         (3, 4), (4, 3), (4, 4),
 | |
|         (3, 0), (0, 3)])
 | |
|     @pytest.mark.parametrize("outer_size", [
 | |
|         (2, 2), (2,), (2, 3, 4)])
 | |
|     @pytest.mark.parametrize("dt", [
 | |
|         np.single, np.double,
 | |
|         np.csingle, np.cdouble])
 | |
|     def test_stacked_inputs(self, outer_size, size, dt):
 | |
| 
 | |
|         rng = np.random.default_rng(123)
 | |
|         A = rng.normal(size=outer_size + size).astype(dt)
 | |
|         B = rng.normal(size=outer_size + size).astype(dt)
 | |
|         self.check_qr_stacked(A)
 | |
|         self.check_qr_stacked(A + 1.j * B)
 | |
| 
 | |
| 
 | |
| class TestCholesky:
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
 | |
|     )
 | |
|     @pytest.mark.parametrize(
 | |
|         'dtype', (np.float32, np.float64, np.complex64, np.complex128)
 | |
|     )
 | |
|     @pytest.mark.parametrize(
 | |
|         'upper', [False, True])
 | |
|     def test_basic_property(self, shape, dtype, upper):
 | |
|         np.random.seed(1)
 | |
|         a = np.random.randn(*shape)
 | |
|         if np.issubdtype(dtype, np.complexfloating):
 | |
|             a = a + 1j * np.random.randn(*shape)
 | |
| 
 | |
|         t = list(range(len(shape)))
 | |
|         t[-2:] = -1, -2
 | |
| 
 | |
|         a = np.matmul(a.transpose(t).conj(), a)
 | |
|         a = np.asarray(a, dtype=dtype)
 | |
| 
 | |
|         c = np.linalg.cholesky(a, upper=upper)
 | |
| 
 | |
|         # Check A = L L^H or A = U^H U
 | |
|         if upper:
 | |
|             b = np.matmul(c.transpose(t).conj(), c)
 | |
|         else:
 | |
|             b = np.matmul(c, c.transpose(t).conj())
 | |
| 
 | |
|         atol = 500 * a.shape[0] * np.finfo(dtype).eps
 | |
|         assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')
 | |
| 
 | |
|         # Check diag(L or U) is real and positive
 | |
|         d = np.diagonal(c, axis1=-2, axis2=-1)
 | |
|         assert_(np.all(np.isreal(d)))
 | |
|         assert_(np.all(d >= 0))
 | |
| 
 | |
|     def test_0_size(self):
 | |
|         class ArraySubclass(np.ndarray):
 | |
|             pass
 | |
|         a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
 | |
|         res = linalg.cholesky(a)
 | |
|         assert_equal(a.shape, res.shape)
 | |
|         assert_(res.dtype.type is np.float64)
 | |
|         # for documentation purpose:
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
|         a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
 | |
|         res = linalg.cholesky(a)
 | |
|         assert_equal(a.shape, res.shape)
 | |
|         assert_(res.dtype.type is np.complex64)
 | |
|         assert_(isinstance(res, np.ndarray))
 | |
| 
 | |
|     def test_upper_lower_arg(self):
 | |
|         # Explicit test of upper argument that also checks the default.
 | |
|         a = np.array([[1 + 0j, 0 - 2j], [0 + 2j, 5 + 0j]])
 | |
| 
 | |
|         assert_equal(linalg.cholesky(a), linalg.cholesky(a, upper=False))
 | |
| 
 | |
|         assert_equal(
 | |
|             linalg.cholesky(a, upper=True),
 | |
|             linalg.cholesky(a).T.conj()
 | |
|         )
 | |
| 
 | |
| 
 | |
| class TestOuter:
 | |
|     arr1 = np.arange(3)
 | |
|     arr2 = np.arange(3)
 | |
|     expected = np.array(
 | |
|         [[0, 0, 0],
 | |
|          [0, 1, 2],
 | |
|          [0, 2, 4]]
 | |
|     )
 | |
| 
 | |
|     assert_array_equal(np.linalg.outer(arr1, arr2), expected)
 | |
| 
 | |
|     with assert_raises_regex(
 | |
|         ValueError, "Input arrays must be one-dimensional"
 | |
|     ):
 | |
|         np.linalg.outer(arr1[:, np.newaxis], arr2)
 | |
| 
 | |
| 
 | |
| def test_byteorder_check():
 | |
|     # Byte order check should pass for native order
 | |
|     if sys.byteorder == 'little':
 | |
|         native = '<'
 | |
|     else:
 | |
|         native = '>'
 | |
| 
 | |
|     for dtt in (np.float32, np.float64):
 | |
|         arr = np.eye(4, dtype=dtt)
 | |
|         n_arr = arr.view(arr.dtype.newbyteorder(native))
 | |
|         sw_arr = arr.view(arr.dtype.newbyteorder("S")).byteswap()
 | |
|         assert_equal(arr.dtype.byteorder, '=')
 | |
|         for routine in (linalg.inv, linalg.det, linalg.pinv):
 | |
|             # Normal call
 | |
|             res = routine(arr)
 | |
|             # Native but not '='
 | |
|             assert_array_equal(res, routine(n_arr))
 | |
|             # Swapped
 | |
|             assert_array_equal(res, routine(sw_arr))
 | |
| 
 | |
| 
 | |
| @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
 | |
| def test_generalized_raise_multiloop():
 | |
|     # It should raise an error even if the error doesn't occur in the
 | |
|     # last iteration of the ufunc inner loop
 | |
| 
 | |
|     invertible = np.array([[1, 2], [3, 4]])
 | |
|     non_invertible = np.array([[1, 1], [1, 1]])
 | |
| 
 | |
|     x = np.zeros([4, 4, 2, 2])[1::2]
 | |
|     x[...] = invertible
 | |
|     x[0, 0] = non_invertible
 | |
| 
 | |
|     assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
 | |
| 
 | |
| 
 | |
| @pytest.mark.skipif(
 | |
|     threading.active_count() > 1,
 | |
|     reason="skipping test that uses fork because there are multiple threads")
 | |
| @pytest.mark.skipif(
 | |
|     NOGIL_BUILD,
 | |
|     reason="Cannot safely use fork in tests on the free-threaded build")
 | |
| def test_xerbla_override():
 | |
|     # Check that our xerbla has been successfully linked in. If it is not,
 | |
|     # the default xerbla routine is called, which prints a message to stdout
 | |
|     # and may, or may not, abort the process depending on the LAPACK package.
 | |
| 
 | |
|     XERBLA_OK = 255
 | |
| 
 | |
|     try:
 | |
|         pid = os.fork()
 | |
|     except (OSError, AttributeError):
 | |
|         # fork failed, or not running on POSIX
 | |
|         pytest.skip("Not POSIX or fork failed.")
 | |
| 
 | |
|     if pid == 0:
 | |
|         # child; close i/o file handles
 | |
|         os.close(1)
 | |
|         os.close(0)
 | |
|         # Avoid producing core files.
 | |
|         import resource
 | |
|         resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
 | |
|         # These calls may abort.
 | |
|         try:
 | |
|             np.linalg.lapack_lite.xerbla()
 | |
|         except ValueError:
 | |
|             pass
 | |
|         except Exception:
 | |
|             os._exit(os.EX_CONFIG)
 | |
| 
 | |
|         try:
 | |
|             a = np.array([[1.]])
 | |
|             np.linalg.lapack_lite.dorgqr(
 | |
|                 1, 1, 1, a,
 | |
|                 0,  # <- invalid value
 | |
|                 a, a, 0, 0)
 | |
|         except ValueError as e:
 | |
|             if "DORGQR parameter number 5" in str(e):
 | |
|                 # success, reuse error code to mark success as
 | |
|                 # FORTRAN STOP returns as success.
 | |
|                 os._exit(XERBLA_OK)
 | |
| 
 | |
|         # Did not abort, but our xerbla was not linked in.
 | |
|         os._exit(os.EX_CONFIG)
 | |
|     else:
 | |
|         # parent
 | |
|         pid, status = os.wait()
 | |
|         if os.WEXITSTATUS(status) != XERBLA_OK:
 | |
|             pytest.skip('Numpy xerbla not linked in.')
 | |
| 
 | |
| 
 | |
| @pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
 | |
| @pytest.mark.slow
 | |
| def test_sdot_bug_8577():
 | |
|     # Regression test that loading certain other libraries does not
 | |
|     # result to wrong results in float32 linear algebra.
 | |
|     #
 | |
|     # There's a bug gh-8577 on OSX that can trigger this, and perhaps
 | |
|     # there are also other situations in which it occurs.
 | |
|     #
 | |
|     # Do the check in a separate process.
 | |
| 
 | |
|     bad_libs = ['PyQt5.QtWidgets', 'IPython']
 | |
| 
 | |
|     template = textwrap.dedent("""
 | |
|     import sys
 | |
|     {before}
 | |
|     try:
 | |
|         import {bad_lib}
 | |
|     except ImportError:
 | |
|         sys.exit(0)
 | |
|     {after}
 | |
|     x = np.ones(2, dtype=np.float32)
 | |
|     sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
 | |
|     """)
 | |
| 
 | |
|     for bad_lib in bad_libs:
 | |
|         code = template.format(before="import numpy as np", after="",
 | |
|                                bad_lib=bad_lib)
 | |
|         subprocess.check_call([sys.executable, "-c", code])
 | |
| 
 | |
|         # Swapped import order
 | |
|         code = template.format(after="import numpy as np", before="",
 | |
|                                bad_lib=bad_lib)
 | |
|         subprocess.check_call([sys.executable, "-c", code])
 | |
| 
 | |
| 
 | |
| class TestMultiDot:
 | |
| 
 | |
|     def test_basic_function_with_three_arguments(self):
 | |
|         # multi_dot with three arguments uses a fast hand coded algorithm to
 | |
|         # determine the optimal order. Therefore test it separately.
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
| 
 | |
|         assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
 | |
|         assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
 | |
| 
 | |
|     def test_basic_function_with_two_arguments(self):
 | |
|         # separate code path with two arguments
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
| 
 | |
|         assert_almost_equal(multi_dot([A, B]), A.dot(B))
 | |
|         assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
 | |
| 
 | |
|     def test_basic_function_with_dynamic_programming_optimization(self):
 | |
|         # multi_dot with four or more arguments uses the dynamic programming
 | |
|         # optimization and therefore deserve a separate
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
|         D = np.random.random((2, 1))
 | |
|         assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
 | |
| 
 | |
|     def test_vector_as_first_argument(self):
 | |
|         # The first argument can be 1-D
 | |
|         A1d = np.random.random(2)  # 1-D
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
|         D = np.random.random((2, 2))
 | |
| 
 | |
|         # the result should be 1-D
 | |
|         assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
 | |
| 
 | |
|     def test_vector_as_last_argument(self):
 | |
|         # The last argument can be 1-D
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
|         D1d = np.random.random(2)  # 1-D
 | |
| 
 | |
|         # the result should be 1-D
 | |
|         assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
 | |
| 
 | |
|     def test_vector_as_first_and_last_argument(self):
 | |
|         # The first and last arguments can be 1-D
 | |
|         A1d = np.random.random(2)  # 1-D
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
|         D1d = np.random.random(2)  # 1-D
 | |
| 
 | |
|         # the result should be a scalar
 | |
|         assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
 | |
| 
 | |
|     def test_three_arguments_and_out(self):
 | |
|         # multi_dot with three arguments uses a fast hand coded algorithm to
 | |
|         # determine the optimal order. Therefore test it separately.
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
| 
 | |
|         out = np.zeros((6, 2))
 | |
|         ret = multi_dot([A, B, C], out=out)
 | |
|         assert out is ret
 | |
|         assert_almost_equal(out, A.dot(B).dot(C))
 | |
|         assert_almost_equal(out, np.dot(A, np.dot(B, C)))
 | |
| 
 | |
|     def test_two_arguments_and_out(self):
 | |
|         # separate code path with two arguments
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         out = np.zeros((6, 6))
 | |
|         ret = multi_dot([A, B], out=out)
 | |
|         assert out is ret
 | |
|         assert_almost_equal(out, A.dot(B))
 | |
|         assert_almost_equal(out, np.dot(A, B))
 | |
| 
 | |
|     def test_dynamic_programming_optimization_and_out(self):
 | |
|         # multi_dot with four or more arguments uses the dynamic programming
 | |
|         # optimization and therefore deserve a separate test
 | |
|         A = np.random.random((6, 2))
 | |
|         B = np.random.random((2, 6))
 | |
|         C = np.random.random((6, 2))
 | |
|         D = np.random.random((2, 1))
 | |
|         out = np.zeros((6, 1))
 | |
|         ret = multi_dot([A, B, C, D], out=out)
 | |
|         assert out is ret
 | |
|         assert_almost_equal(out, A.dot(B).dot(C).dot(D))
 | |
| 
 | |
|     def test_dynamic_programming_logic(self):
 | |
|         # Test for the dynamic programming part
 | |
|         # This test is directly taken from Cormen page 376.
 | |
|         arrays = [np.random.random((30, 35)),
 | |
|                   np.random.random((35, 15)),
 | |
|                   np.random.random((15, 5)),
 | |
|                   np.random.random((5, 10)),
 | |
|                   np.random.random((10, 20)),
 | |
|                   np.random.random((20, 25))]
 | |
|         m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
 | |
|                                [0.,     0., 2625., 4375.,  7125., 10500.],
 | |
|                                [0.,     0.,    0.,  750.,  2500.,  5375.],
 | |
|                                [0.,     0.,    0.,    0.,  1000.,  3500.],
 | |
|                                [0.,     0.,    0.,    0.,     0.,  5000.],
 | |
|                                [0.,     0.,    0.,    0.,     0.,     0.]])
 | |
|         s_expected = np.array([[0,  1,  1,  3,  3,  3],
 | |
|                                [0,  0,  2,  3,  3,  3],
 | |
|                                [0,  0,  0,  3,  3,  3],
 | |
|                                [0,  0,  0,  0,  4,  5],
 | |
|                                [0,  0,  0,  0,  0,  5],
 | |
|                                [0,  0,  0,  0,  0,  0]], dtype=int)
 | |
|         s_expected -= 1  # Cormen uses 1-based index, python does not.
 | |
| 
 | |
|         s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
 | |
| 
 | |
|         # Only the upper triangular part (without the diagonal) is interesting.
 | |
|         assert_almost_equal(np.triu(s[:-1, 1:]),
 | |
|                             np.triu(s_expected[:-1, 1:]))
 | |
|         assert_almost_equal(np.triu(m), np.triu(m_expected))
 | |
| 
 | |
|     def test_too_few_input_arrays(self):
 | |
|         assert_raises(ValueError, multi_dot, [])
 | |
|         assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
 | |
| 
 | |
| 
 | |
| class TestTensorinv:
 | |
| 
 | |
|     @pytest.mark.parametrize("arr, ind", [
 | |
|         (np.ones((4, 6, 8, 2)), 2),
 | |
|         (np.ones((3, 3, 2)), 1),
 | |
|         ])
 | |
|     def test_non_square_handling(self, arr, ind):
 | |
|         with assert_raises(LinAlgError):
 | |
|             linalg.tensorinv(arr, ind=ind)
 | |
| 
 | |
|     @pytest.mark.parametrize("shape, ind", [
 | |
|         # examples from docstring
 | |
|         ((4, 6, 8, 3), 2),
 | |
|         ((24, 8, 3), 1),
 | |
|         ])
 | |
|     def test_tensorinv_shape(self, shape, ind):
 | |
|         a = np.eye(24)
 | |
|         a.shape = shape
 | |
|         ainv = linalg.tensorinv(a=a, ind=ind)
 | |
|         expected = a.shape[ind:] + a.shape[:ind]
 | |
|         actual = ainv.shape
 | |
|         assert_equal(actual, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("ind", [
 | |
|         0, -2,
 | |
|         ])
 | |
|     def test_tensorinv_ind_limit(self, ind):
 | |
|         a = np.eye(24)
 | |
|         a.shape = (4, 6, 8, 3)
 | |
|         with assert_raises(ValueError):
 | |
|             linalg.tensorinv(a=a, ind=ind)
 | |
| 
 | |
|     def test_tensorinv_result(self):
 | |
|         # mimic a docstring example
 | |
|         a = np.eye(24)
 | |
|         a.shape = (24, 8, 3)
 | |
|         ainv = linalg.tensorinv(a, ind=1)
 | |
|         b = np.ones(24)
 | |
|         assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
 | |
| 
 | |
| 
 | |
| class TestTensorsolve:
 | |
| 
 | |
|     @pytest.mark.parametrize("a, axes", [
 | |
|         (np.ones((4, 6, 8, 2)), None),
 | |
|         (np.ones((3, 3, 2)), (0, 2)),
 | |
|         ])
 | |
|     def test_non_square_handling(self, a, axes):
 | |
|         with assert_raises(LinAlgError):
 | |
|             b = np.ones(a.shape[:2])
 | |
|             linalg.tensorsolve(a, b, axes=axes)
 | |
| 
 | |
|     @pytest.mark.parametrize("shape",
 | |
|         [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
 | |
|     )
 | |
|     def test_tensorsolve_result(self, shape):
 | |
|         a = np.random.randn(*shape)
 | |
|         b = np.ones(a.shape[:2])
 | |
|         x = np.linalg.tensorsolve(a, b)
 | |
|         assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
 | |
| 
 | |
| 
 | |
| def test_unsupported_commontype():
 | |
|     # linalg gracefully handles unsupported type
 | |
|     arr = np.array([[1, -2], [2, 5]], dtype='float16')
 | |
|     with assert_raises_regex(TypeError, "unsupported in linalg"):
 | |
|         linalg.cholesky(arr)
 | |
| 
 | |
| 
 | |
| #@pytest.mark.slow
 | |
| #@pytest.mark.xfail(not HAS_LAPACK64, run=False,
 | |
| #                   reason="Numpy not compiled with 64-bit BLAS/LAPACK")
 | |
| #@requires_memory(free_bytes=16e9)
 | |
| @pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
 | |
| def test_blas64_dot():
 | |
|     n = 2**32
 | |
|     a = np.zeros([1, n], dtype=np.float32)
 | |
|     b = np.ones([1, 1], dtype=np.float32)
 | |
|     a[0, -1] = 1
 | |
|     c = np.dot(b, a)
 | |
|     assert_equal(c[0, -1], 1)
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail(not HAS_LAPACK64,
 | |
|                    reason="Numpy not compiled with 64-bit BLAS/LAPACK")
 | |
| def test_blas64_geqrf_lwork_smoketest():
 | |
|     # Smoke test LAPACK geqrf lwork call with 64-bit integers
 | |
|     dtype = np.float64
 | |
|     lapack_routine = np.linalg.lapack_lite.dgeqrf
 | |
| 
 | |
|     m = 2**32 + 1
 | |
|     n = 2**32 + 1
 | |
|     lda = m
 | |
| 
 | |
|     # Dummy arrays, not referenced by the lapack routine, so don't
 | |
|     # need to be of the right size
 | |
|     a = np.zeros([1, 1], dtype=dtype)
 | |
|     work = np.zeros([1], dtype=dtype)
 | |
|     tau = np.zeros([1], dtype=dtype)
 | |
| 
 | |
|     # Size query
 | |
|     results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
 | |
|     assert_equal(results['info'], 0)
 | |
|     assert_equal(results['m'], m)
 | |
|     assert_equal(results['n'], m)
 | |
| 
 | |
|     # Should result to an integer of a reasonable size
 | |
|     lwork = int(work.item())
 | |
|     assert_(2**32 < lwork < 2**42)
 | |
| 
 | |
| 
 | |
| def test_diagonal():
 | |
|     # Here we only test if selected axes are compatible
 | |
|     # with Array API (last two). Core implementation
 | |
|     # of `diagonal` is tested in `test_multiarray.py`.
 | |
|     x = np.arange(60).reshape((3, 4, 5))
 | |
|     actual = np.linalg.diagonal(x)
 | |
|     expected = np.array(
 | |
|         [
 | |
|             [0,  6, 12, 18],
 | |
|             [20, 26, 32, 38],
 | |
|             [40, 46, 52, 58],
 | |
|         ]
 | |
|     )
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
| 
 | |
| def test_trace():
 | |
|     # Here we only test if selected axes are compatible
 | |
|     # with Array API (last two). Core implementation
 | |
|     # of `trace` is tested in `test_multiarray.py`.
 | |
|     x = np.arange(60).reshape((3, 4, 5))
 | |
|     actual = np.linalg.trace(x)
 | |
|     expected = np.array([36, 116, 196])
 | |
| 
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
| 
 | |
| def test_cross():
 | |
|     x = np.arange(9).reshape((3, 3))
 | |
|     actual = np.linalg.cross(x, x + 1)
 | |
|     expected = np.array([
 | |
|         [-1, 2, -1],
 | |
|         [-1, 2, -1],
 | |
|         [-1, 2, -1],
 | |
|     ])
 | |
| 
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
|     # We test that lists are converted to arrays.
 | |
|     u = [1, 2, 3]
 | |
|     v = [4, 5, 6]
 | |
|     actual = np.linalg.cross(u, v)
 | |
|     expected = array([-3,  6, -3])
 | |
| 
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
|     with assert_raises_regex(
 | |
|         ValueError,
 | |
|         r"input arrays must be \(arrays of\) 3-dimensional vectors"
 | |
|     ):
 | |
|         x_2dim = x[:, 1:]
 | |
|         np.linalg.cross(x_2dim, x_2dim)
 | |
| 
 | |
| 
 | |
| def test_tensordot():
 | |
|     # np.linalg.tensordot is just an alias for np.tensordot
 | |
|     x = np.arange(6).reshape((2, 3))
 | |
| 
 | |
|     assert np.linalg.tensordot(x, x) == 55
 | |
|     assert np.linalg.tensordot(x, x, axes=[(0, 1), (0, 1)]) == 55
 | |
| 
 | |
| 
 | |
| def test_matmul():
 | |
|     # np.linalg.matmul and np.matmul only differs in the number
 | |
|     # of arguments in the signature
 | |
|     x = np.arange(6).reshape((2, 3))
 | |
|     actual = np.linalg.matmul(x, x.T)
 | |
|     expected = np.array([[5, 14], [14, 50]])
 | |
| 
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
| 
 | |
| def test_matrix_transpose():
 | |
|     x = np.arange(6).reshape((2, 3))
 | |
|     actual = np.linalg.matrix_transpose(x)
 | |
|     expected = x.T
 | |
| 
 | |
|     assert_equal(actual, expected)
 | |
| 
 | |
|     with assert_raises_regex(
 | |
|         ValueError, "array must be at least 2-dimensional"
 | |
|     ):
 | |
|         np.linalg.matrix_transpose(x[:, 0])
 | |
| 
 | |
| 
 | |
| def test_matrix_norm():
 | |
|     x = np.arange(9).reshape((3, 3))
 | |
|     actual = np.linalg.matrix_norm(x)
 | |
| 
 | |
|     assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
 | |
| 
 | |
|     actual = np.linalg.matrix_norm(x, keepdims=True)
 | |
| 
 | |
|     assert_almost_equal(actual, np.array([[14.2828]]), double_decimal=3)
 | |
| 
 | |
| 
 | |
| def test_matrix_norm_empty():
 | |
|     for shape in [(0, 2), (2, 0), (0, 0)]:
 | |
|         for dtype in [np.float64, np.float32, np.int32]:
 | |
|             x = np.zeros(shape, dtype)
 | |
|             assert_equal(np.linalg.matrix_norm(x, ord="fro"), 0)
 | |
|             assert_equal(np.linalg.matrix_norm(x, ord="nuc"), 0)
 | |
|             assert_equal(np.linalg.matrix_norm(x, ord=1), 0)
 | |
|             assert_equal(np.linalg.matrix_norm(x, ord=2), 0)
 | |
|             assert_equal(np.linalg.matrix_norm(x, ord=np.inf), 0)
 | |
| 
 | |
| def test_vector_norm():
 | |
|     x = np.arange(9).reshape((3, 3))
 | |
|     actual = np.linalg.vector_norm(x)
 | |
| 
 | |
|     assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
 | |
| 
 | |
|     actual = np.linalg.vector_norm(x, axis=0)
 | |
| 
 | |
|     assert_almost_equal(
 | |
|         actual, np.array([6.7082, 8.124, 9.6436]), double_decimal=3
 | |
|     )
 | |
| 
 | |
|     actual = np.linalg.vector_norm(x, keepdims=True)
 | |
|     expected = np.full((1, 1), 14.2828, dtype='float64')
 | |
|     assert_equal(actual.shape, expected.shape)
 | |
|     assert_almost_equal(actual, expected, double_decimal=3)
 | |
| 
 | |
| 
 | |
| def test_vector_norm_empty():
 | |
|     for dtype in [np.float64, np.float32, np.int32]:
 | |
|         x = np.zeros(0, dtype)
 | |
|         assert_equal(np.linalg.vector_norm(x, ord=1), 0)
 | |
|         assert_equal(np.linalg.vector_norm(x, ord=2), 0)
 | |
|         assert_equal(np.linalg.vector_norm(x, ord=np.inf), 0)
 |